Closed Sets
The closed sets with respect to a closure operator on S form a subset C of the power set P(S). Any intersection of sets in C is again in C. In other words, C is a complete meet-subsemilattice of P(S). Conversely, if C ⊆ P(S) is closed under arbitrary intersections, then the function that associates to every subset X of S the smallest set Y ∈ C such that X ⊆ Y is a closure operator.
A closure operator on a set is topological if and only if the set of closed sets is closed under finite unions, i.e., C is a meet-complete sublattice of P(S). Even for non-topological closure operators, C can be seen as having the structure of a lattice. (The join of two sets X,Y ⊆ P(S) being cl(X Y).) But then C is not a sublattice of the lattice P(S).
Given a finitary closure operator on a set, the closures of finite sets are exactly the compact elements of the set C of closed sets. It follows that C is an algebraic poset. Since C is also a lattice, it is often referred to as an algebraic lattice in this context. Conversely, if C is an algebraic poset, then the closure operator is finitary.
Read more about this topic: Closure Operator
Famous quotes containing the words closed and/or sets:
“She was so overcome by the splendor of his achievement that she took him into the closet and selected a choice apple and delivered it to him, along with an improving lecture upon the added value and flavor a treat took to itself when it came without sin through virtuous effort. And while she closed with a Scriptural flourish, he hooked a doughnut.”
—Mark Twain [Samuel Langhorne Clemens] (18351910)
“This is certainly not the place for a discourse about what festivals are for. Discussions on this theme were plentiful during that phase of preparation and on the whole were fruitless. My experience is that discussion is fruitless. What sets forth and demonstrates is the sight of events in action, is living through these events and understanding them.”
—Doris Lessing (b. 1919)