Closed Sets
The closed sets with respect to a closure operator on S form a subset C of the power set P(S). Any intersection of sets in C is again in C. In other words, C is a complete meet-subsemilattice of P(S). Conversely, if C ⊆ P(S) is closed under arbitrary intersections, then the function that associates to every subset X of S the smallest set Y ∈ C such that X ⊆ Y is a closure operator.
A closure operator on a set is topological if and only if the set of closed sets is closed under finite unions, i.e., C is a meet-complete sublattice of P(S). Even for non-topological closure operators, C can be seen as having the structure of a lattice. (The join of two sets X,Y ⊆ P(S) being cl(X Y).) But then C is not a sublattice of the lattice P(S).
Given a finitary closure operator on a set, the closures of finite sets are exactly the compact elements of the set C of closed sets. It follows that C is an algebraic poset. Since C is also a lattice, it is often referred to as an algebraic lattice in this context. Conversely, if C is an algebraic poset, then the closure operator is finitary.
Read more about this topic: Closure Operator
Famous quotes containing the words closed and/or sets:
“One mans observation is another mans closed book or flight of fancy.”
—Willard Van Orman Quine (b. 1908)
“Eddie did not die. He is no longer on Channel 4, and our sets are tuned to Channel 4; hes on Channel 7, but hes still broadcasting. Physical incarnation is highly overrated; it is one corner of universal possibility.”
—Marianne Williamson (b. 1953)