Second-generation Classification
The proof of the theorem, as it stood around 1985 or so, can be called first generation. Because of the extreme length of the first generation proof, much effort has been devoted to finding a simpler proof, called a second-generation classification proof. This effort, called "revisionism", was originally led by Daniel Gorenstein.
As of 2005, six volumes of the second generation proof have been published (Gorenstein, Lyons & Solomon 1994, 1996, 1998, 1999, 2002, 2005), with most of the balance of the proof in manuscript. It is estimated that the new proof will eventually fill approximately 5,000 pages. (This length stems in part from second generation proof being written in a more relaxed style.) Aschbacher and Smith wrote their two volumes devoted to the quasithin case in such a way that those volumes can be part of the second generation proof.
Gorenstein and his collaborators have given several reasons why a simpler proof is possible.
- The most important is that the correct, final statement of the theorem is now known. Simpler techniques can be applied that are known to be adequate for the types of groups we know to be finite simple. In contrast, those who worked on the first generation proof did not know how many sporadic groups there were, and in fact some of the sporadic groups (e.g., the Janko groups) were discovered while proving other cases of the classification theorem. As a result, many of the pieces of the theorem were proved using techniques that were overly general.
- Because the conclusion was unknown, the first generation proof consists of many stand-alone theorems, dealing with important special cases. Much of the work of proving these theorems was devoted to the analysis of numerous special cases. Given a larger, orchestrated proof, dealing with many of these special cases can be postponed until the most powerful assumptions can be applied. The price paid under this revised strategy is that these first generation theorems no longer have comparatively short proofs, but instead rely on the complete classification.
- Many first generation theorems overlap, and so divide the possible cases in inefficient ways. As a result, families and subfamiles of finite simple groups were identified multiple times. The revised proof eliminates these redundancies by relying on a different subdivision of cases.
- Finite group theorists have more experience at this sort of exercise, and have new techniques at their disposal.
Aschbacher (2004) has called the work on the classification problem by Ulrich Meierfrankenfeld, Bernd Stellmacher, Gernot Stroth, and a few others, a third generation program. One goal of this is to treat all groups in characteristic 2 uniformly using the amalgam method.
Read more about this topic: Classification Of Finite Simple Groups