Classical Electromagnetism - General Field Equations

General Field Equations

As simple and satisfying as Coulomb's equation may be, it is not entirely correct in the context of classical electromagnetism. Problems arise because changes in charge distributions require a non-zero amount of time to be "felt" elsewhere (required by special relativity).

For the fields of general charge distributions, the retarded potentials can be computed and differentiated accordingly to yield Jefimenko's Equations.

Retarded potentials can also be derived for point charges, and the equations are known as the LiƩnard-Wiechert potentials. The scalar potential is:


\varphi = \frac{1}{4 \pi \varepsilon_0} \frac{q}{\left| \mathbf{r} - \mathbf{r}_q(t_{ret}) \right|-\frac{\mathbf{v}_q(t_{ret})}{c} \cdot (\mathbf{r} - \mathbf{r}_q(t_{ret}))}

where q is the point charge's charge and r is the position. rq and vq are the position and velocity of the charge, respectively, as a function of retarded time. The vector potential is similar:


\mathbf{A} = \frac{\mu_0}{4 \pi} \frac{q\mathbf{v}_q(t_{ret})}{\left| \mathbf{r} - \mathbf{r}_q(t_{ret}) \right|-\frac{\mathbf{v}_q(t_{ret})}{c} \cdot (\mathbf{r} - \mathbf{r}_q(t_{ret}))}.

These can then be differentiated accordingly to obtain the complete field equations for a moving point particle.

Read more about this topic:  Classical Electromagnetism

Famous quotes containing the words general and/or field:

    General jackdaw culture, very little more than a collection of charming miscomprehensions, untargeted enthusiasms, and a general habit of skimming.
    William Bolitho (1890–1930)

    Mine was, as it were, the connecting link between wild and cultivated fields; as some states are civilized, and others half-civilized, and others savage or barbarous, so my field was, though not in a bad sense, a half-cultivated field. They were beans cheerfully returning to their wild and primitive state that I cultivated, and my hoe played the Ranz des Vaches for them.
    Henry David Thoreau (1817–1862)