General Field Equations
As simple and satisfying as Coulomb's equation may be, it is not entirely correct in the context of classical electromagnetism. Problems arise because changes in charge distributions require a non-zero amount of time to be "felt" elsewhere (required by special relativity).
For the fields of general charge distributions, the retarded potentials can be computed and differentiated accordingly to yield Jefimenko's Equations.
Retarded potentials can also be derived for point charges, and the equations are known as the Liénard-Wiechert potentials. The scalar potential is:
where q is the point charge's charge and r is the position. rq and vq are the position and velocity of the charge, respectively, as a function of retarded time. The vector potential is similar:
These can then be differentiated accordingly to obtain the complete field equations for a moving point particle.
Read more about this topic: Classical Electromagnetism
Famous quotes containing the words general and/or field:
“Though of erect nature, man is far above the plants. For mans superior part, his head, is turned toward the superior part of the world, and his inferior part is turned toward the inferior world; and therefore he is perfectly disposed as to the general situation of his body. Plants have the superior part turned towards the lower world, since their roots correspond to the mouth, and their inferior parts towards the upper world.”
—Thomas Aquinas (c. 12251274)
“Because mothers and daughters can affirm and enjoy their commonalities more readily, they are more likely to see how they might advance their individual interests in tandem, without one having to be sacrificed for the other.”
—Mary Field Belenky (20th century)