Kinetic Momentum
In classical mechanics, linear momentum or translational momentum (pl. momenta; SI unit kg m/s, or, equivalently, N s) is the product of the mass and velocity of an object. For example, a heavy truck moving fast has a large momentum—it takes a large and prolonged force to get the truck up to this speed, and it takes a large and prolonged force to bring it to a stop afterwards. If the truck were lighter, or moving slower, then it would have less momentum.
Like velocity, linear momentum is a vector quantity, possessing a direction as well as a magnitude:
Linear momentum is also a conserved quantity, meaning that if a closed system is not affected by external forces, its total linear momentum cannot change. In classical mechanics, conservation of linear momentum is implied by Newton's laws; but it also holds in special relativity (with a modified formula) and, with appropriate definitions, a (generalized) linear momentum conservation law holds in electrodynamics, quantum mechanics, quantum field theory, and general relativity.
Read more about Kinetic Momentum: Newtonian Mechanics, Generalized Coordinates, Classical Electromagnetism, Quantum Mechanics, History of The Concept
Famous quotes containing the word kinetic:
“The poem has a social effect of some kind whether or not the poet wills it to have. It has kinetic force, it sets in motion ... [ellipsis in source] elements in the reader that would otherwise be stagnant.”
—Denise Levertov (b. 1923)