Citrate Synthase - Structure

Structure

Citrate synthase's 437 amino acid residues are organized into two main subunits, each consisting of 20 alpha-helices. These alpha helices compose approximately 75% of citrate synthase's tertiary structure, while the remaining residues mainly compose irregular extensions of the structure, save a single beta-sheet of 13 residues. Between these two subunits, a single cleft exists containing the active site. Two binding sites can be found therein: one reserved for citrate or oxaloacetate and the other for Coenzyme A. The active site contains three key residues: His274, His320, and Asp375 that are highly selective in their interactions with substrates. The image to the right highlights the three key amino acids of citrate synthase's active site in its open state (the substrate is absent). The specific atoms involved in interactions are designated by color, and both a drawing and video of their mechanism can be found in the section labeled "Mechanism" below. The images to the left display the tertiary structure of citrate synthase in its opened and closed form. The enzyme changes from opened to closed with the addition of one of its substrates (such as oxaloacetate).

Read more about this topic:  Citrate Synthase

Famous quotes containing the word structure:

    I really do inhabit a system in which words are capable of shaking the entire structure of government, where words can prove mightier than ten military divisions.
    Václav Havel (b. 1936)

    It is difficult even to choose the adjective
    For this blank cold, this sadness without cause.
    The great structure has become a minor house.
    No turban walks across the lessened floors.
    The greenhouse never so badly needed paint.
    Wallace Stevens (1879–1955)

    Science is intimately integrated with the whole social structure and cultural tradition. They mutually support one other—only in certain types of society can science flourish, and conversely without a continuous and healthy development and application of science such a society cannot function properly.
    Talcott Parsons (1902–1979)