Circle of Confusion - Circle of Confusion Diameter Limit in Photography

Circle of Confusion Diameter Limit in Photography

In photography, the circle of confusion diameter limit (“CoC”) for the final image is often defined as the largest blur spot that will still be perceived by the human eye as a point.

With this definition, the CoC in the original image (the image on the film or electronic sensor) depends on three factors:

  1. Visual acuity. For most people, the closest comfortable viewing distance, termed the near distance for distinct vision (Ray 2000, 52), is approximately 25 cm. At this distance, a person with good vision can usually distinguish an image resolution of 5 line pairs per millimeter (lp/mm), equivalent to a CoC of 0.2 mm in the final image.
  2. Viewing conditions. If the final image is viewed at approximately 25 cm, a final-image CoC of 0.2 mm often is appropriate. A comfortable viewing distance is also one at which the angle of view is approximately 60° (Ray 2000, 52); at a distance of 25 cm, this corresponds to about 30 cm, approximately the diagonal of an 8″×10″ image. It often may be reasonable to assume that, for whole-image viewing, a final image larger than 8″×10″ will be viewed at a distance correspondingly greater than 25 cm, and for which a larger CoC may be acceptable; the original-image CoC is then the same as that determined from the standard final-image size and viewing distance. But if the larger final image will be viewed at the normal distance of 25 cm, a smaller original-image CoC will be needed to provide acceptable sharpness.
  3. Enlargement from the original image to the final image. If there is no enlargement (e.g., a contact print of an 8×10 original image), the CoC for the original image is the same as that in the final image. But if, for example, the long dimension of a 35 mm original image is enlarged to 25 cm (10 inches), the enlargement is approximately 7×, and the CoC for the original image is 0.2 mm / 7, or 0.029 mm.

The common values for CoC may not be applicable if reproduction or viewing conditions differ significantly from those assumed in determining those values. If the original image will be given greater enlargement, or viewed at a closer distance, then a smaller CoC will be required. All three factors above are accommodated with this formula:

CoC (mm) = viewing distance (cm) / desired final-image resolution (lp/mm) for a 25 cm viewing distance / enlargement / 25

For example, to support a final-image resolution equivalent to 5 lp/mm for a 25 cm viewing distance when the anticipated viewing distance is 50 cm and the anticipated enlargement is 8:

CoC = 50 / 5 / 8 / 25 = 0.05 mm

Since the final-image size is not usually known at the time of taking a photograph, it is common to assume a standard size such as 25 cm width, along with a conventional final-image CoC of 0.2 mm, which is 1/1250 of the image width. Conventions in terms of the diagonal measure are also commonly used. The DoF computed using these conventions will need to be adjusted if the original image is cropped before enlarging to the final image size, or if the size and viewing assumptions are altered.

Using the “Zeiss formula”, the circle of confusion is sometimes calculated as d/1730 where d is the diagonal measure of the original image (the camera format). For full-frame 35 mm format (24 mm × 36 mm, 43 mm diagonal) this comes out to be 0.025 mm. A more widely used CoC is d/1500, or 0.029 mm for full-frame 35 mm format, which corresponds to resolving 5 lines per millimeter on a print of 30 cm diagonal. Values of 0.030 mm and 0.033 mm are also common for full-frame 35 mm format. For practical purposes, d/1730, a final-image CoC of 0.2 mm, and d/1500 give very similar results.

Criteria relating CoC to the lens focal length have also been used. Kodak (1972), 5) recommended 2 minutes of arc (the Snellen criterion of 30 cycles/degree for normal vision) for critical viewing, giving CoC ≈ f /1720, where f is the lens focal length. For a 50 mm lens on full-frame 35 mm format, this gave CoC ≈ 0.0291 mm. This criterion evidently assumed that a final image would be viewed at “perspective-correct” distance (i.e., the angle of view would be the same as that of the original image):

Viewing distance = focal length of taking lens × enlargement

However, images seldom are viewed at the “correct” distance; the viewer usually doesn't know the focal length of the taking lens, and the “correct” distance may be uncomfortably short or long. Consequently, criteria based on lens focal length have generally given way to criteria (such as d/1500) related to the camera format.

If an image is viewed on a low-resolution display medium such as a computer monitor, the detectability of blur will be limited by the display medium rather than by human vision. For example, the optical blur will be more difficult to detect in an 8″×10″ image displayed on a computer monitor than in an 8″×10″ print of the same original image viewed at the same distance. If the image is to be viewed only on a low-resolution device, a larger CoC may be appropriate; however, if the image may also be viewed in a high-resolution medium such as a print, the criteria discussed above will govern.

Depth of field formulas derived from geometrical optics imply that any arbitrary DoF can be achieved by using a sufficiently small CoC. Because of diffraction, however, this isn't quite true. Using a smaller CoC requires increasing the lens f-number to achieve the same DOF, and if the lens is stopped down sufficiently far, the reduction in defocus blur is offset by the increased blur from diffraction. See the Depth of field article for a more detailed discussion.

Read more about this topic:  Circle Of Confusion

Famous quotes containing the words circle, confusion, limit and/or photography:

    A man should not go where he cannot carry his whole sphere or society with him,Mnot bodily, the whole circle of his friends, but atmospherically. He should preserve in a new company the same attitude of mind and reality of relation, which his daily associates draw him to, else he is shorn of his best beams, and will be an orphan in the merriest club.
    Ralph Waldo Emerson (1803–1882)

    Behind her was confusion in the room,
    Of chairs turned upside down to sit like people
    In other chairs, and something, come to look,
    For every room a house has parlor, bedroom,
    And dining room thrown pell-mell in the kitchen.
    Robert Frost (1874–1963)

    Berowne they call him, but a merrier man,
    Within the limit of becoming mirth,
    I never spent an hour’s talk withal.
    William Shakespeare (1564–1616)

    If photography is allowed to stand in for art in some of its functions it will soon supplant or corrupt it completely thanks to the natural support it will find in the stupidity of the multitude. It must return to its real task, which is to be the servant of the sciences and the arts, but the very humble servant, like printing and shorthand which have neither created nor supplanted literature.
    Charles Baudelaire (1821–1867)