Relation Between Chebyshev Polynomials of The First and Second Kinds
The Chebyshev polynomials of the first and second kind are closely related by the following equations
- , where n is odd.
- , where n is even.
The recurrence relationship of the derivative of Chebyshev polynomials can be derived from these relations
This relationship is used in the Chebyshev spectral method of solving differential equations.
Equivalently, the two sequences can also be defined from a pair of mutual recurrence equations:
These can be derived from the trigonometric formulae; for example, if, then
Note that both these equations and the trigonometric equations take a simpler form if we, like some works, follow the alternate convention of denoting our Un (the polynomial of degree n) with Un+1 instead.
Turán's inequalities for the Chebyshev polynomials are
- and
Read more about this topic: Chebyshev Polynomials
Famous quotes containing the words relation between, relation and/or kinds:
“We shall never resolve the enigma of the relation between the negative foundations of greatness and that greatness itself.”
—Jean Baudrillard (b. 1929)
“Science is the language of the temporal world; love is that of the spiritual world. Man, indeed, describes more than he explains; while the angelic spirit sees and understands. Science saddens man; love enraptures the angel; science is still seeking, love has found. Man judges of nature in relation to itself; the angelic spirit judges of it in relation to heaven. In short to the spirits everything speaks.”
—Honoré De Balzac (17991850)
“There are three kinds of lies: lies, damned lies and statistics.”
—Benjamin Disraeli (18041881)