Chebyshev Polynomials - Relation Between Chebyshev Polynomials of The First and Second Kinds

Relation Between Chebyshev Polynomials of The First and Second Kinds

The Chebyshev polynomials of the first and second kind are closely related by the following equations

, where n is odd.
, where n is even.

The recurrence relationship of the derivative of Chebyshev polynomials can be derived from these relations

This relationship is used in the Chebyshev spectral method of solving differential equations.

Equivalently, the two sequences can also be defined from a pair of mutual recurrence equations:

These can be derived from the trigonometric formulae; for example, if, then

\begin{align} T_{n+1}(x) &= T_{n+1}(\cos(\vartheta)) \\ &= \cos((n + 1)\vartheta) \\ &= \cos(n\vartheta)\cos(\vartheta) - \sin(n\vartheta)\sin(\vartheta) \\ &= T_n(\cos(\vartheta))\cos(\vartheta) - U_{n-1}(\cos(\vartheta))\sin^2(\vartheta) \\ &= xT_n(x) - (1 - x^2)U_{n-1}(x). \\
\end{align}

Note that both these equations and the trigonometric equations take a simpler form if we, like some works, follow the alternate convention of denoting our Un (the polynomial of degree n) with Un+1 instead.

TurĂ¡n's inequalities for the Chebyshev polynomials are

and

Read more about this topic:  Chebyshev Polynomials

Famous quotes containing the words relation and/or kinds:

    ... a worker was seldom so much annoyed by what he got as by what he got in relation to his fellow workers.
    Mary Barnett Gilson (1877–?)

    To see self-sufficiency as the hallmark of maturity conveys a view of adult life that is at odds with the human condition, a view that cannot sustain the kinds of long-term commitments and involvements with other people that are necessary for raising and educating a child or for citizenship in a democratic society.
    Carol Gilligan (20th century)