The Chain Rule in Higher Dimensions
The simplest generalization of the chain rule to higher dimensions uses the total derivative. The total derivative is a linear transformation that captures how the function changes in all directions. Let f : Rm → Rk and g : Rn → Rm be differentiable functions, and let D be the total derivative operator. If a is a point in Rn, then the higher dimensional chain rule says that:
or for short,
In terms of Jacobian matrices, the rule says
That is, the Jacobian of the composite function is the product of the Jacobians of the composed functions. The higher-dimensional chain rule can be proved using a technique similar to the second proof given above.
The higher-dimensional chain rule is a generalization of the one-dimensional chain rule. If k, m, and n are 1, so that f : R → R and g : R → R, then the Jacobian matrices of f and g are 1 × 1. Specifically, they are:
The Jacobian of f ∘ g is the product of these 1 × 1 matrices, so it is f′(g(a))g′(a), as expected from the one-dimensional chain rule. In the language of linear transformations, Da(g) is the function which scales a vector by a factor of g′(a) and Dg(a)(f) is the function which scales a vector by a factor of f′(g(a)). The chain rule says that the composite of these two linear transformations is the linear transformation Da(f ∘ g), and therefore it is the function that scales a vector by f′(g(a))g′(a).
Another way of writing the chain rule is used when f and g are expressed in terms of their components as y = f(u) = (f1(u), ..., fk(u)) and u = g(x) = (g1(x), ..., gm(x)). In this case, the above rule for Jacobian matrices is usually written as:
The chain rule for total derivatives implies a chain rule for partial derivatives. Recall that when the total derivative exists, the partial derivative in the ith coordinate direction is found by multiplying the Jacobian matrix by the ith basis vector. By doing this to the formula above, we find:
Since the entries of the Jacobian matrix are partial derivatives, we may simplify the above formula to get:
More conceptually, this rule expresses the fact that a change in the xi direction may change all of g1 through gk, and any of these changes may affect f.
In the special case where k = 1, so that f is a real-valued function, then this formula simplifies even further:
Read more about this topic: Chain Rule
Famous quotes containing the words chain, rule, higher and/or dimensions:
“Loyalty to petrified opinions never yet broke a chain or freed a human soul in this worldand never will.”
—Mark Twain [Samuel Langhorne Clemens] (18351910)
“There were some schools, so called [in my youth]; but no qualification was ever required of a teacher, beyond readin, writin, and cipherin, to the Rule of Three. If a straggler supposed to understand latin, happened to sojourn in the neighborhood, he was looked upon as a wizzard. There was absolutely nothing to excite ambition for education.”
—Abraham Lincoln (18091865)
“The lesson learned here is a costly one: If you stand up for your principles, follow the law, and win massively, you lose totally.”
—Linda J. Carpenter, U.S. educator. As quoted in the Chronicle of Higher Education, p. A38 (July 15, 1992)
“The truth is that a Pigmy and a Patagonian, a Mouse and a Mammoth, derive their dimensions from the same nutritive juices.... [A]ll the manna of heaven would never raise the Mouse to the bulk of the Mammoth.”
—Thomas Jefferson (17431826)