Chain Rule

In calculus, the chain rule is a formula for computing the derivative of the composition of two or more functions. That is, if f is a function and g is a function, then the chain rule expresses the derivative of the composite function f ∘ g in terms of the derivatives of f and g.

In integration, the counterpart to the chain rule is the substitution rule.

Read more about Chain Rule:  History, The Chain Rule in Higher Dimensions, Further Generalizations

Famous quotes containing the words chain and/or rule:

    The conclusion suggested by these arguments might be called the paradox of theorizing. It asserts that if the terms and the general principles of a scientific theory serve their purpose, i. e., if they establish the definite connections among observable phenomena, then they can be dispensed with since any chain of laws and interpretive statements establishing such a connection should then be replaceable by a law which directly links observational antecedents to observational consequents.
    —C.G. (Carl Gustav)

    When great changes occur in history, when great principles are involved, as a rule the majority are wrong.
    Eugene V. Debs (1855–1926)