Properties
- There is a unique division algebra in each Brauer equivalence class.
- Every automorphism of a central simple algebra is an inner automorphism (follows from Skolem–Noether theorem).
- The dimension of a central simple algebra as a vector space over its centre is always a square: the degree is the square root of this dimension. The Schur index of a CSA, or of a class, is the degree of the equivalent division algebra.
- If S is a simple subalgebra of a central simple algebra A then dimF S divides dimF A.
- Every 4-dimensional central simple algebra over a field F is isomorphic to a quaternion algebra; in fact, it is either a two-by-two matrix algebra, or a division algebra.
Read more about this topic: Central Simple Algebra
Famous quotes containing the word properties:
“The reason why men enter into society, is the preservation of their property; and the end why they choose and authorize a legislative, is, that there may be laws made, and rules set, as guards and fences to the properties of all the members of the society: to limit the power, and moderate the dominion, of every part and member of the society.”
—John Locke (16321704)
“A drop of water has the properties of the sea, but cannot exhibit a storm. There is beauty of a concert, as well as of a flute; strength of a host, as well as of a hero.”
—Ralph Waldo Emerson (18031882)
Related Subjects
Related Phrases
Related Words