The lower central series (or descending central series) of a group G is the descending series of subgroups
- G = G1 ⊵ G2 ⊵ ⋯ ⊵ Gn ⊵ ⋯,
where each Gn + 1 =, the subgroup of G generated by all commutators with x in Gn and y in G. Thus, G2 = = G(1), the derived subgroup of G; G3 =, G], etc. The lower central series is often denoted γn(G) = Gn.
This should not be confused with the derived series, whose terms are G(n) :=, not Gn := . The series are related by G(n) ≤ Gn. In particular, a nilpotent group is a solvable group, and its derived length is logarithmic in its nilpotency class (Schenkman 1975, p. 201,216).
For infinite groups, one can continue the lower central series to infinite ordinal numbers via transfinite recursion: for a limit ordinal λ, define Gλ = ∩ { Gα : α < λ}. If Gλ = 1 for some ordinal λ, then G is said to be a hypocentral group. For every ordinal λ, there is a group G such that Gλ = 1, but Gα ≠ 1 for all α < λ, (Malcev 1949).
If ω is the first infinite ordinal, then Gω is the smallest normal subgroup of G such that the quotient is residually nilpotent, that is, such that every non-identity element has a non-identity homomorphic image in a nilpotent group (Schenkman 1975, p. 175,183). In the field of combinatorial group theory, it is an important and early result that free groups are residually nilpotent. In fact the quotients of the lower central series are free abelian groups with a natural basis defined by basic commutators, (Hall 1959, Ch. 11).
If Gω = Gn for some finite n, then Gω is the smallest normal subgroup of G with nilpotent quotient, and Gω is called the nilpotent residual of G. This is always the case for a finite group, and defines the F1(G) term in the lower Fitting series for G.
If Gω ≠ Gn for all finite n, then G/Gω is not nilpotent, but it is residually nilpotent.
There is no general term for the intersection of all terms of the transfinite lower central series, analogous to the hypercenter (below).
Read more about this topic: Central Series
Famous quotes containing the words central and/or series:
“There has never been in history another such culture as the Western civilization M a culture which has practiced the belief that the physical and social environment of man is subject to rational manipulation and that history is subject to the will and action of man; whereas central to the traditional cultures of the rivals of Western civilization, those of Africa and Asia, is a belief that it is environment that dominates man.”
—Ishmael Reed (b. 1938)
“The theory of truth is a series of truisms.”
—J.L. (John Langshaw)