Cauchy's Integral Theorem - Discussion

Discussion

As was shown by Goursat, Cauchy's integral theorem can be proven assuming only that the complex derivative f '(z) exists everywhere in U. This is significant, because one can then prove Cauchy's integral formula for these functions, and from that deduce these functions are in fact infinitely differentiable.

The condition that U be simply connected means that U has no "holes" or, in homotopy terms, that the fundamental group of U is trivial; for instance, every open disk qualifies. The condition is crucial; consider

which traces out the unit circle, and then the path integral

is non-zero; the Cauchy integral theorem does not apply here since is not defined (and certainly not holomorphic) at .

One important consequence of the theorem is that path integrals of holomorphic functions on simply connected domains can be computed in a manner familiar from the fundamental theorem of real calculus: let U be a simply connected open subset of C, let f : UC be a holomorphic function, and let γ be a piecewise continuously differentiable path in U with start point a and end point b. If F is a complex antiderivative of f, then

The Cauchy integral theorem is valid in slightly stronger forms than given above. e.g. Let U be a simply connected open subset of C and f a function which is holomorphic on U and continuous on . Let be a loop in which is uniform limit of a sequence of rectifiable loops in U with bounded length. Then, applying the Cauchy theorem to the, and passing to the limit one has

See e.g. (Kodaira 2007, Theorem 2.3) for a more general result.

The Cauchy integral theorem leads to Cauchy's integral formula and the residue theorem.

Read more about this topic:  Cauchy's Integral Theorem

Famous quotes containing the word discussion:

    Opinions are formed in a process of open discussion and public debate, and where no opportunity for the forming of opinions exists, there may be moods—moods of the masses and moods of individuals, the latter no less fickle and unreliable than the former—but no opinion.
    Hannah Arendt (1906–1975)

    My companion and I, having a minute’s discussion on some point of ancient history, were amused by the attitude which the Indian, who could not tell what we were talking about, assumed. He constituted himself umpire, and, judging by our air and gesture, he very seriously remarked from time to time, “you beat,” or “he beat.”
    Henry David Thoreau (1817–1862)

    We cannot set aside an hour for discussion with our children and hope that it will be a time of deep encounter. The special moments of intimacy are more likely to happen while baking a cake together, or playing hide and seek, or just sitting in the waiting room of the orthodontist.
    Neil Kurshan (20th century)