Category Theory - Natural Transformations and Isomorphisms

Natural Transformations and Isomorphisms

A natural transformation is a relation between two functors. Functors often describe "natural constructions" and natural transformations then describe "natural homomorphisms" between two such constructions. Sometimes two quite different constructions yield "the same" result; this is expressed by a natural isomorphism between the two functors.

If F and G are (covariant) functors between the categories C and D, then a natural transformation η from F to G associates to every object X in C a morphism ηX : F(X) → G(X) in D such that for every morphism f : XY in C, we have ηYF(f) = G(f) ∘ ηX; this means that the following diagram is commutative:

The two functors F and G are called naturally isomorphic if there exists a natural transformation from F to G such that ηX is an isomorphism for every object X in C.

Read more about this topic:  Category Theory

Famous quotes containing the word natural:

    Mountains are the beginning and the end of all natural scenery.
    John Ruskin (1819–1900)