Category Theory - Historical Notes

Historical Notes

In 1942–45, Samuel Eilenberg and Saunders Mac Lane introduced categories, functors, and natural transformations as part of their work in topology, especially algebraic topology. Their work was an important part of the transition from intuitive and geometric homology to axiomatic homology theory. Eilenberg and Mac Lane later wrote that their goal was to understand natural transformations; in order to do that, functors had to be defined, which required categories.

Stanisław Ulam, and some writing on his behalf, have claimed that related ideas were current in the late 1930s in Poland. Eilenberg was Polish, and studied mathematics in Poland in the 1930s. Category theory is also, in some sense, a continuation of the work of Emmy Noether (one of Mac Lane's teachers) in formalizing abstract processes; Noether realized that in order to understand a type of mathematical structure, one needs to understand the processes preserving that structure. In order to achieve this understanding, Eilenberg and Mac Lane proposed an axiomatic formalization of the relation between structures and the processes preserving them.

The subsequent development of category theory was powered first by the computational needs of homological algebra, and later by the axiomatic needs of algebraic geometry, the field most resistant to being grounded in either axiomatic set theory or the Russell-Whitehead view of united foundations. General category theory, an extension of universal algebra having many new features allowing for semantic flexibility and higher-order logic, came later; it is now applied throughout mathematics.

Certain categories called topoi (singular topos) can even serve as an alternative to axiomatic set theory as a foundation of mathematics. These foundational applications of category theory have been worked out in fair detail as a basis for, and justification of, constructive mathematics. More recent efforts to introduce undergraduates to categories as a foundation for mathematics include William Lawvere and Rosebrugh (2003) and Lawvere and Stephen Schanuel (1997) and Mirroslav Yotov (2012).

Categorical logic is now a well-defined field based on type theory for intuitionistic logics, with applications in functional programming and domain theory, where a cartesian closed category is taken as a non-syntactic description of a lambda calculus. At the very least, category theoretic language clarifies what exactly these related areas have in common (in some abstract sense).

Category theory has been applied in other fields as well. For example, John Baez has shown a link between Feynman diagrams in Physics and monoidal categories. Another application of category theory, more specifically: topos theory, has been made in mathematical music theory, see for example the book The Topos of Music, Geometric Logic of Concepts, Theory, and Performance by Guerino Mazzola.

Read more about this topic:  Category Theory

Famous quotes containing the words historical and/or notes:

    Whether considered as a doctrine, or as an historical fact, or as a movemement, socialism, if it really remains socialism, cannot be brought into harmony with the dogmas of the Catholic church.... Religious socialism, Christian socialism, are expressions implying a contradiction in terms.
    Pius XI [Achille Ratti] (1857–1939)

    The germ of violence is laid bare in the child abuser by the sheer accident of his individual experience ... in a word, to a greater degree than we like to admit, we are all potential child abusers.
    F. Gonzalez-Crussi, Mexican professor of pathology, author. “Reflections on Child Abuse,” Notes of an Anatomist (1985)