Properties
- The distribution is completely given by the probabilities associated with each number i:, i = 1,...,k, where . The possible probabilities are exactly the standard -dimensional simplex; for k = 2 this reduces to the possible probabilities of the Bernoulli distribution being the 1-simplex,
- The distribution is a special case of a "multivariate Bernoulli distribution" in which exactly one of the k 0-1 variables takes the value one.
- Let be the realisation from a categorical distribution. Define the random vector Y as composed of the elements:
-
- where I is the indicator function. Then Y has a distribution which is a special case of the multinomial distribution with parameter . The sum of independent and identically distributed such random variables Y constructed from a categorical distribution with parameter is multinomially distributed with parameters and
- The conjugate prior distribution of a categorical distribution is a Dirichlet distribution. See the section below for more discussion.
- The sufficient statistic from n independent observations is the set of counts (or, equivalently, proportion) of observations in each category, where the total number of trials (=n) is fixed.
- The indicator function of an observation having a value i, equivalent to the Iverson bracket function or the Kronecker delta function is Bernoulli distributed with parameter
Read more about this topic: Categorical Distribution
Famous quotes containing the word properties:
“The reason why men enter into society, is the preservation of their property; and the end why they choose and authorize a legislative, is, that there may be laws made, and rules set, as guards and fences to the properties of all the members of the society: to limit the power, and moderate the dominion, of every part and member of the society.”
—John Locke (16321704)
“A drop of water has the properties of the sea, but cannot exhibit a storm. There is beauty of a concert, as well as of a flute; strength of a host, as well as of a hero.”
—Ralph Waldo Emerson (18031882)