Category Theory
Although the Cartesian product is traditionally applied to sets, category theory provides a more general interpretation of the product of mathematical structures. This is distinct from, although related to, the notion of a Cartesian square in category theory, which is a generalization of the fiber product.
Exponentiation is the right adjoint of the Cartesian product; thus any category with a Cartesian product (and a final object) is a Cartesian closed category.
Read more about this topic: Cartesian Product
Famous quotes containing the words category and/or theory:
“Despair is typical of those who do not understand the causes of evil, see no way out, and are incapable of struggle. The modern industrial proletariat does not belong to the category of such classes.”
—Vladimir Ilyich Lenin (18701924)
“every subjective phenomenon is essentially connected with a single point of view, and it seems inevitable that an objective, physical theory will abandon that point of view.”
—Thomas Nagel (b. 1938)