Cartesian Product - Category Theory

Category Theory

Although the Cartesian product is traditionally applied to sets, category theory provides a more general interpretation of the product of mathematical structures. This is distinct from, although related to, the notion of a Cartesian square in category theory, which is a generalization of the fiber product.

Exponentiation is the right adjoint of the Cartesian product; thus any category with a Cartesian product (and a final object) is a Cartesian closed category.

Read more about this topic:  Cartesian Product

Famous quotes containing the words category and/or theory:

    I see no reason for calling my work poetry except that there is no other category in which to put it.
    Marianne Moore (1887–1972)

    No one thinks anything silly is suitable when they are an adolescent. Such an enormous share of their own behavior is silly that they lose all proper perspective on silliness, like a baker who is nauseated by the sight of his own eclairs. This provides another good argument for the emerging theory that the best use of cryogenics is to freeze all human beings when they are between the ages of twelve and nineteen.
    Anna Quindlen (20th century)