Cartesian Product - Cartesian Square and Cartesian Power

Cartesian Square and Cartesian Power

The Cartesian square (or binary Cartesian product) of a set X is the Cartesian product X2 = X × X. An example is the 2-dimensional plane R2 = R × R where R is the set of real numbers - all points (x,y) where x and y are real numbers (see the Cartesian coordinate system).

The cartesian power of a set X can be defined as:

An example of this is R3 = R × R × R, with R again the set of real numbers, and more generally Rn.

The n-ary cartesian power of a set X is isomorphic to the space of functions from an n-element set to X. As a special case, the 0-ary cartesian power of X may be taken to be a singleton set, corresponding to the empty function with codomain X.

Read more about this topic:  Cartesian Product

Famous quotes containing the words square and/or power:

    This house was designed and constructed with the freedom of stroke of a forester’s axe, without other compass and square than Nature uses.
    Henry David Thoreau (1817–1862)

    What preoccupies us, then, is not God as a fact of nature, but as a fabrication useful for a God-fearing society. God himself becomes not a power but an image.
    Daniel J. Boorstin (b. 1914)