Cartesian Product - Basic Properties

Basic Properties

Let A, B, C, and D be sets.

The Cartesian product A × B is not commutative,

because the ordered pairs are reversed except if at least one condition is satisfied:

  • A is equal to B, or
  • A or B is an empty set.

For example:

A = {1,2}; B = {3,4}
A × B = {1,2} × {3,4} = {(1,3), (1,4), (2,3), (2,4)}
B × A = {3,4} × {1,2} = {(3,1), (3,2), (4,1), (4,2)}
A = B = {1,2}
A × B = B × A = {1,2} × {1,2} = {(1,1), (1,2), (2,1), (2,2)}
A = {1,2}; B = ∅
A × B = {1,2} × ∅ = ∅
B × A = ∅ × {1,2} = ∅

Strictly speaking, the Cartesian product is not associative (unless the above condition occurs).

Read more about this topic:  Cartesian Product

Famous quotes containing the words basic and/or properties:

    It is a strange fact that freedom and equality, the two basic ideas of democracy, are to some extent contradictory. Logically considered, freedom and equality are mutually exclusive, just as society and the individual are mutually exclusive.
    Thomas Mann (1875–1955)

    The reason why men enter into society, is the preservation of their property; and the end why they choose and authorize a legislative, is, that there may be laws made, and rules set, as guards and fences to the properties of all the members of the society: to limit the power, and moderate the dominion, of every part and member of the society.
    John Locke (1632–1704)