Borel Measure
In mathematics, specifically in measure theory, a Borel measure is defined as follows: let X be a locally compact Hausdorff space, and let be the smallest σ-algebra that contains the open sets of X; this is known as the σ-algebra of Borel sets. Any measure μ defined on the σ-algebra of Borel sets is called a Borel measure. Some authors require in addition that μ(C) < ∞ for every compact set C. If a Borel measure μ is both inner regular and outer regular, it is called a regular Borel measure. If μ is both inner regular and locally finite, it is called a Radon measure. Note that a locally finite Borel measure automatically satisfies μ(C) < ∞ for every compact set C.
Read more about Borel Measure: On The Real Line
Famous quotes containing the word measure:
“To measure life learn thou betimes, and know
Toward solid good what leads the nearest way;
For other things mild Heaven a time ordains,
And disapproves that care, though wise in show,
That with superfluous burden loads the day,
And, when God sends a cheerful hour, refrains.”
—John Milton (16081674)