Borel Measure

Borel Measure

In mathematics, specifically in measure theory, a Borel measure is defined as follows: let X be a locally compact Hausdorff space, and let be the smallest σ-algebra that contains the open sets of X; this is known as the σ-algebra of Borel sets. Any measure μ defined on the σ-algebra of Borel sets is called a Borel measure. Some authors require in addition that μ(C) < ∞ for every compact set C. If a Borel measure μ is both inner regular and outer regular, it is called a regular Borel measure. If μ is both inner regular and locally finite, it is called a Radon measure. Note that a locally finite Borel measure automatically satisfies μ(C) < ∞ for every compact set C.

Read more about Borel Measure:  On The Real Line

Famous quotes containing the word measure:

    Trying to love your children equally is a losing battle. Your children’s scorecards will never match your own. No matter how meticulously you measure and mete out your love and attention, and material gifts, it will never feel truly equal to your children. . . . Your children will need different things at different times, and true equality won’t really serve their different needs very well, anyway.
    Marianne E. Neifert (20th century)