Bisection Method - Example: Finding The Root of A Polynomial

Example: Finding The Root of A Polynomial

Suppose that the bisection method is used to find a root of the polynomial

First, two numbers and have to be found such that and have opposite signs. For the above function, and satisfy this criterion, as

and

Because the function is continuous, there must be a root within the interval .

In the first iteration, the end points of the interval which brackets the root are and, so the midpoint is

The function value at the midpoint is . Because is negative, is replaced with for the next iteration to ensure that and have opposite signs. As this continues, the interval between and will become increasingly smaller, converging on the root of the function. See this happen in the table below.

Iteration
1 1 2 1.5 −0.125
2 1.5 2 1.75 1.6093750
3 1.5 1.75 1.625 0.6660156
4 1.5 1.625 1.5625 0.2521973
5 1.5 1.5625 1.5312500 0.0591125
6 1.5 1.5312500 1.5156250 −0.0340538
7 1.5156250 1.5312500 1.5234375 0.0122504
8 1.5156250 1.5234375 1.5195313 −0.0109712
9 1.5195313 1.5234375 1.5214844 0.0006222
10 1.5195313 1.5214844 1.5205078 −0.0051789
11 1.5205078 1.5214844 1.5209961 −0.0022794
12 1.5209961 1.5214844 1.5212402 −0.0008289
13 1.5212402 1.5214844 1.5213623 −0.0001034
14 1.5213623 1.5214844 1.5214233 0.0002594
15 1.5213623 1.5214233 1.5213928 0.0000780

After 15 iterations, it becomes apparent that there is a convergence to about 1.521: a root for the polynomial.

Read more about this topic:  Bisection Method

Famous quotes containing the words finding and/or root:

    At the age of twelve I was finding the world too small: it appeared to me like a dull, trim back garden, in which only trivial games could be played.
    Elizabeth Bowen (1899–1973)

    Not marble nor the gilded monuments
    Of princes shall outlive this powerful rime;
    But you shall shine more bright in these contents
    Than unswept stone, besmeared with sluttish time.
    When wasteful war shall statues overturn,
    And broils root out the work of masonry,
    Nor Mars his sword nor war’s quick fire shall burn
    The living record of your memory.
    William Shakespeare (1564–1616)