Alternative Definitions
Set-theoretically, one may represent a binary function as a subset of the Cartesian product X × Y × Z, where (x,y,z) belongs to the subset if and only if f(x,y) = z. Conversely, a subset R defines a binary function if and only if, for any x in X and y in Y, there exists a unique z in Z such that (x,y,z) belongs to R. We then define f (x,y) to be this z.
Alternatively, a binary function may be interpreted as simply a function from X × Y to Z. Even when thought of this way, however, one generally writes f (x,y) instead of f((x,y)). (That is, the same pair of parentheses is used to indicate both function application and the formation of an ordered pair.)
Read more about this topic: Binary Function
Famous quotes containing the words alternative and/or definitions:
“If you have abandoned one faith, do not abandon all faith. There is always an alternative to the faith we lose. Or is it the same faith under another mask?”
—Graham Greene (19041991)
“The loosening, for some people, of rigid role definitions for men and women has shown that dads can be great at calming babiesif they take the time and make the effort to learn how. Its that time and effort that not only teaches the dad how to calm the babies, but also turns him into a parent, just as the time and effort the mother puts into the babies turns her into a parent.”
—Pamela Patrick Novotny (20th century)