Stability and Minimum-phase Property Preserved
A continuous-time causal filter is stable if the poles of its transfer function fall in the left half of the complex s-plane. A discrete-time causal filter is stable if the poles of its transfer function fall inside the unit circle in the complex z-plane. The bilinear transform maps the left half of the complex s-plane to the interior of the unit circle in the z-plane. Thus filters designed in the continuous-time domain that are stable are converted to filters in the discrete-time domain that preserve that stability.
Likewise, a continuous-time filter is minimum-phase if the zeros of its transfer function fall in the left half of the complex s-plane. A discrete-time filter is minimum-phase if the zeros of its transfer function fall inside the unit circle in the complex z-plane. Then the same mapping property assures that continuous-time filters that are minimum-phase are converted to discrete-time filters that preserve that property of being minimum-phase.
Read more about this topic: Bilinear Transform
Famous quotes containing the words stability, property and/or preserved:
“Free from public debt, at peace with all the world, and with no complicated interests to consult in our intercourse with foreign powers, the present may be hailed as the epoch in our history the most favorable for the settlement of those principles in our domestic policy which shall be best calculated to give stability to our Republic and secure the blessings of freedom to our citizens.”
—Andrew Jackson (17671845)
“In the Greek cities, it was reckoned profane, that any person should pretend a property in a work of art, which belonged to all who could behold it.”
—Ralph Waldo Emerson (18031882)
“Neither lemonade nor anything else can prevent the inroads of old age. At present, I am stoical under its advances, and hope I shall remain so. I have but one prayer at heart; and that is, to have my faculties so far preserved that I can be useful, in some way or other, to the last.”
—Lydia M. Child (18021880)