Bilinear Transform - Stability and Minimum-phase Property Preserved

Stability and Minimum-phase Property Preserved

A continuous-time causal filter is stable if the poles of its transfer function fall in the left half of the complex s-plane. A discrete-time causal filter is stable if the poles of its transfer function fall inside the unit circle in the complex z-plane. The bilinear transform maps the left half of the complex s-plane to the interior of the unit circle in the z-plane. Thus filters designed in the continuous-time domain that are stable are converted to filters in the discrete-time domain that preserve that stability.

Likewise, a continuous-time filter is minimum-phase if the zeros of its transfer function fall in the left half of the complex s-plane. A discrete-time filter is minimum-phase if the zeros of its transfer function fall inside the unit circle in the complex z-plane. Then the same mapping property assures that continuous-time filters that are minimum-phase are converted to discrete-time filters that preserve that property of being minimum-phase.

Read more about this topic:  Bilinear Transform

Famous quotes containing the words stability, property and/or preserved:

    ...I feel anxious for the fate of our monarchy, or democracy, or whatever is to take place. I soon get lost in a labyrinth of perplexities; but, whatever occurs, may justice and righteousness be the stability of our times, and order arise out of confusion. Great difficulties may be surmounted by patience and perseverance.
    Abigail Adams (1744–1818)

    The charming landscape which I saw this morning is indubitably made up of some twenty or thirty farms. Miller owns this field, Locke that, and Manning the woodland beyond. But none of them owns the landscape. There is property in the horizon which no man has but he whose eye can integrate all parts, that is, the poet. This is the best part of these men’s farms, yet to this their warranty-deeds give no title.
    Ralph Waldo Emerson (1803–1882)

    The wisdom of the wise, and the experience of ages, may be preserved by quotation.
    Isaac D’Israeli (1766–1848)