Relation To Tensor Products
By the universal property of the tensor product, bilinear forms on V are in 1-to-1 correspondence with linear maps V ⊗ V → F. If B is a bilinear form on V the corresponding linear map is given by
- v ⊗ w ↦ B(v, w)
The set of all linear maps V ⊗ V → F is the dual space of V ⊗ V, so bilinear forms may be thought of as elements of
- (V ⊗ V)* ≅ V* ⊗ V*
Likewise, symmetric bilinear forms may be thought of as elements of Sym2(V*) (the second symmetric power of V*), and alternating bilinear forms as elements of Λ2V* (the second exterior power of V*).
Read more about this topic: Bilinear Form
Famous quotes containing the words relation to, relation and/or products:
“... a worker was seldom so much annoyed by what he got as by what he got in relation to his fellow workers.”
—Mary Barnett Gilson (1877?)
“Hesitation increases in relation to risk in equal proportion to age.”
—Ernest Hemingway (18991961)
“The reality is that zero defects in products plus zero pollution plus zero risk on the job is equivalent to maximum growth of government plus zero economic growth plus runaway inflation.”
—Dixie Lee Ray (b. 1924)