Relation To Tensor Products
By the universal property of the tensor product, bilinear forms on V are in 1-to-1 correspondence with linear maps V ⊗ V → F. If B is a bilinear form on V the corresponding linear map is given by
- v ⊗ w ↦ B(v, w)
The set of all linear maps V ⊗ V → F is the dual space of V ⊗ V, so bilinear forms may be thought of as elements of
- (V ⊗ V)* ≅ V* ⊗ V*
Likewise, symmetric bilinear forms may be thought of as elements of Sym2(V*) (the second symmetric power of V*), and alternating bilinear forms as elements of Λ2V* (the second exterior power of V*).
Read more about this topic: Bilinear Form
Famous quotes containing the words relation to, relation and/or products:
“Unaware of the absurdity of it, we introduce our own petty household rules into the economy of the universe for which the life of generations, peoples, of entire planets, has no importance in relation to the general development.”
—Alexander Herzen (18121870)
“Our sympathy is cold to the relation of distant misery.”
—Edward Gibbon (17371794)
“Isnt it odd that networks accept billions of dollars from advertisers to teach people to use products and then proclaim that children arent learning about violence from their steady diet of it on television!”
—Toni Liebman (20th century)