Bilinear Form - Relation To Tensor Products

Relation To Tensor Products

By the universal property of the tensor product, bilinear forms on V are in 1-to-1 correspondence with linear maps VVF. If B is a bilinear form on V the corresponding linear map is given by

vwB(v, w)

The set of all linear maps VVF is the dual space of VV, so bilinear forms may be thought of as elements of

(VV)* ≅ V*V*

Likewise, symmetric bilinear forms may be thought of as elements of Sym2(V*) (the second symmetric power of V*), and alternating bilinear forms as elements of Λ2V* (the second exterior power of V*).

Read more about this topic:  Bilinear Form

Famous quotes containing the words relation to, relation and/or products:

    Among the most valuable but least appreciated experiences parenthood can provide are the opportunities it offers for exploring, reliving, and resolving one’s own childhood problems in the context of one’s relation to one’s child.
    Bruno Bettelheim (20th century)

    To criticize is to appreciate, to appropriate, to take intellectual possession, to establish in fine a relation with the criticized thing and to make it one’s own.
    Henry James (1843–1916)

    Good wine needs no bush,
    And perhaps products that people really want need no
    hard-sell or soft-sell TV push.
    Why not?
    Look at pot.
    Ogden Nash (1902–1971)