Big O Notation - Orders of Common Functions

Orders of Common Functions

Further information: Time complexity#Table of common time complexities

Here is a list of classes of functions that are commonly encountered when analyzing the running time of an algorithm. In each case, c is a constant and n increases without bound. The slower-growing functions are generally listed first.

Notation Name Example
constant Determining if a number is even or odd; using a constant-size lookup table
double logarithmic Finding an item using interpolation search in a sorted array of uniformly distributed values.
logarithmic Finding an item in a sorted array with a binary search or a balanced search tree as well as all operations in a Binomial heap.
fractional power Searching in a kd-tree
linear Finding an item in an unsorted list or a malformed tree (worst case) or in an unsorted array; Adding two n-bit integers by ripple carry.
n log-star n Performing triangulation of a simple polygon using Seidel's algorithm. (Note log^*(n) =
\begin{cases} 0, & \text{if }n \leq 1 \\ 1 + \log^*(\log n), & \text{if }n>1
\end{cases}
linearithmic, loglinear, or quasilinear Performing a Fast Fourier transform; heapsort, quicksort (best and average case), or merge sort
quadratic Multiplying two n-digit numbers by a simple algorithm; bubble sort (worst case or naive implementation), Shell sort, quicksort (worst case), selection sort or insertion sort
polynomial or algebraic Tree-adjoining grammar parsing; maximum matching for bipartite graphs

L-notation or sub-exponential Factoring a number using the quadratic sieve or number field sieve
exponential Finding the (exact) solution to the travelling salesman problem using dynamic programming; determining if two logical statements are equivalent using brute-force search
factorial Solving the traveling salesman problem via brute-force search; generating all unrestricted permutations of a poset; finding the determinant with expansion by minors.

The statement is sometimes weakened to to derive simpler formulas for asymptotic complexity. For any and, is a subset of for any, so may be considered as a polynomial with some bigger order.

Read more about this topic:  Big O Notation

Famous quotes containing the words orders of, orders, common and/or functions:

    Your money’s no good here. Orders of the house.
    Stanley Kubrick (b. 1928)

    The newspapers, especially those in the East, are amazingly superficial and ... a large number of news gatherers are either cynics at heart or are following the orders and the policies of the owners of their papers.
    Franklin D. Roosevelt (1882–1945)

    Academic and aristocratic people live in such an uncommon atmosphere that common sense can rarely reach them.
    Samuel Butler (1835–1902)

    In today’s world parents find themselves at the mercy of a society which imposes pressures and priorities that allow neither time nor place for meaningful activities and relations between children and adults, which downgrade the role of parents and the functions of parenthood, and which prevent the parent from doing things he wants to do as a guide, friend, and companion to his children.
    Urie Bronfenbrenner (b. 1917)