Generalizations and Related Usages
The generalization to functions taking values in any normed vector space is straightforward (replacing absolute values by norms), where f and g need not take their values in the same space. A generalization to functions g taking values in any topological group is also possible. The "limiting process" x→xo can also be generalized by introducing an arbitrary filter base, i.e. to directed nets f and g. The o notation can be used to define derivatives and differentiability in quite general spaces, and also (asymptotical) equivalence of functions,
which is an equivalence relation and a more restrictive notion than the relationship "f is Θ(g)" from above. (It reduces to if f and g are positive real valued functions.) For example, 2x is Θ(x), but 2x − x is not o(x).
Read more about this topic: Big O Notation
Famous quotes containing the word related:
“No being exists or can exist which is not related to space in some way. God is everywhere, created minds are somewhere, and body is in the space that it occupies; and whatever is neither everywhere nor anywhere does not exist. And hence it follows that space is an effect arising from the first existence of being, because when any being is postulated, space is postulated.”
—Isaac Newton (16421727)