The Bernoulli and Euler Numbers
The Bernoulli numbers are given by An alternate convention defines the Bernoulli numbers as . This definition gives Bn = −nζ(1 − n) where for n = 0 and n = 1 the expression −nζ(1 − n) is to be understood as limx → n −xζ(1 − x). The two conventions differ only for n = 1 since B1(1) = 1/2 = −B1(0).
The Euler numbers are given by
Read more about this topic: Bernoulli Polynomials
Famous quotes containing the word numbers:
“... there are persons who seem to have overcome obstacles and by character and perseverance to have risen to the top. But we have no record of the numbers of able persons who fall by the wayside, persons who, with enough encouragement and opportunity, might make great contributions.”
—Mary Barnett Gilson (1877?)