Unit Interval

In mathematics, the unit interval is the closed interval, that is, the set of all real numbers that are greater than or equal to 0 and less than or equal to 1. It is often denoted I (capital letter I). In addition to its role in real analysis, the unit interval is used to study homotopy theory in the field of topology.

In the literature, the term "unit interval" is sometimes applied to the other shapes that an interval from 0 to 1 could take: (0,1], .

Read more about Unit Interval:  Properties, Generalizations, Fuzzy Logic

Famous quotes containing the words unit and/or interval:

    During the Suffragette revolt of 1913 I ... [urged] that what was needed was not the vote, but a constitutional amendment enacting that all representative bodies shall consist of women and men in equal numbers, whether elected or nominated or coopted or registered or picked up in the street like a coroner’s jury. In the case of elected bodies the only way of effecting this is by the Coupled Vote. The representative unit must not be a man or a woman but a man and a woman.
    George Bernard Shaw (1856–1950)

    I was interested to see how a pioneer lived on this side of the country. His life is in some respects more adventurous than that of his brother in the West; for he contends with winter as well as the wilderness, and there is a greater interval of time at least between him and the army which is to follow. Here immigration is a tide which may ebb when it has swept away the pines; there it is not a tide, but an inundation, and roads and other improvements come steadily rushing after.
    Henry David Thoreau (1817–1862)