Relation To Falling Factorial
The Bernoulli polynomials may be expanded in terms of the falling factorial as
where and
denotes the Stirling number of the second kind. The above may be inverted to express the falling factorial in terms of the Bernoulli polynomials:
where
denotes the Stirling number of the first kind.
Read more about this topic: Bernoulli Polynomials
Famous quotes containing the words relation to, relation and/or falling:
“Unaware of the absurdity of it, we introduce our own petty household rules into the economy of the universe for which the life of generations, peoples, of entire planets, has no importance in relation to the general development.”
—Alexander Herzen (18121870)
“The problem of the twentieth century is the problem of the color-linethe relation of the darker to the lighter races of men in Asia and Africa, in America and the islands of the sea. It was a phase of this problem that caused the Civil War.”
—W.E.B. (William Edward Burghardt)
“They say that falling in love is wonderful, its wonderful, so they say.”
—Irving Berlin (18881989)