Bernoulli Polynomials - Relation To Falling Factorial

Relation To Falling Factorial

The Bernoulli polynomials may be expanded in terms of the falling factorial as

B_{n+1}(x) = B_{n+1} + \sum_{k=0}^n
\frac{n+1}{k+1}
\left\{ \begin{matrix} n \\ k \end{matrix} \right\}
(x)_{k+1}

where and

denotes the Stirling number of the second kind. The above may be inverted to express the falling factorial in terms of the Bernoulli polynomials:

(x)_{n+1} = \sum_{k=0}^n
\frac{n+1}{k+1}
\left
\left(B_{k+1}(x) - B_{k+1} \right)

where

denotes the Stirling number of the first kind.

Read more about this topic:  Bernoulli Polynomials

Famous quotes containing the words relation to, relation and/or falling:

    You see, I am alive, I am alive
    I stand in good relation to the earth
    I stand in good relation to the gods
    I stand in good relation to all that is beautiful
    I stand in good relation to the daughter of Tsen-tainte
    You see, I am alive, I am alive
    N. Scott Momaday (b. 1934)

    There is a relation between the hours of our life and the centuries of time. As the air I breathe is drawn from the great repositories of nature, as the light on my book is yielded by a star a hundred millions of miles distant, as the poise of my body depends on the equilibrium of centrifugal and centripetal forces, so the hours should be instructed by the ages and the ages explained by the hours.
    Ralph Waldo Emerson (1803–1882)

    Falling in love with love
    Is falling for make-believe.
    Lorenz Hart (1895–1943)