Bernoulli Polynomials - Relation To Falling Factorial

Relation To Falling Factorial

The Bernoulli polynomials may be expanded in terms of the falling factorial as

B_{n+1}(x) = B_{n+1} + \sum_{k=0}^n
\frac{n+1}{k+1}
\left\{ \begin{matrix} n \\ k \end{matrix} \right\}
(x)_{k+1}

where and

denotes the Stirling number of the second kind. The above may be inverted to express the falling factorial in terms of the Bernoulli polynomials:

(x)_{n+1} = \sum_{k=0}^n
\frac{n+1}{k+1}
\left
\left(B_{k+1}(x) - B_{k+1} \right)

where

denotes the Stirling number of the first kind.

Read more about this topic:  Bernoulli Polynomials

Famous quotes containing the words relation to, relation and/or falling:

    Unaware of the absurdity of it, we introduce our own petty household rules into the economy of the universe for which the life of generations, peoples, of entire planets, has no importance in relation to the general development.
    Alexander Herzen (1812–1870)

    The problem of the twentieth century is the problem of the color-line—the relation of the darker to the lighter races of men in Asia and Africa, in America and the islands of the sea. It was a phase of this problem that caused the Civil War.
    —W.E.B. (William Edward Burghardt)

    They say that falling in love is wonderful, it’s wonderful, so they say.
    Irving Berlin (1888–1989)