Bernoulli Polynomials - Maximum and Minimum

Maximum and Minimum

At higher n, the amount of variation in Bn(x) between x = 0 and x = 1 gets large. For instance,

B_{16}(x)=x^{16}-8x^{15}+20x^{14}-\frac{182}{3}x^{12}+\frac{572}{3}x^{10}-429x^8+\frac{1820}{3}x^6
-\frac{1382}{3}x^4+140x^2-\frac{3617}{510}

which shows that the value at x = 0 (and at x = 1) is −3617/510 ≈ −7.09, while at x = 1/2, the value is 118518239/3342336 ≈ +7.09. D.H. Lehmer showed that the maximum value of Bn(x) between 0 and 1 obeys

unless n is 2 modulo 4, in which case

(where is the Riemann zeta function), while the minimum obeys

unless n is 0 modulo 4, in which case

These limits are quite close to the actual maximum and minimum, and Lehmer gives more accurate limits as well.

Read more about this topic:  Bernoulli Polynomials

Famous quotes containing the words maximum and/or minimum:

    I had a quick grasp of the secret to sanity—it had become the ability to hold the maximum of impossible combinations in one’s mind.
    Norman Mailer (b. 1923)

    There are ... two minimum conditions necessary and sufficient for the existence of a legal system. On the one hand those rules of behavior which are valid according to the system’s ultimate criteria of validity must be generally obeyed, and on the other hand, its rules of recognition specifying the criteria of legal validity and its rules of change and adjudication must be effectively accepted as common public standards of official behavior by its officials.
    —H.L.A. (Herbert Lionel Adolphus)