Bernoulli Polynomials - Integrals

Integrals

Indefinite integrals

\int_a^x B_n(t)\,dt =
\frac{B_{n+1}(x)-B_{n+1}(a)}{n+1}
\int_a^x E_n(t)\,dt =
\frac{E_{n+1}(x)-E_{n+1}(a)}{n+1}

Definite integrals

\int_0^1 B_n(t) B_m(t)\,dt =
(-1)^{n-1} \frac{m! n!}{(m+n)!} B_{n+m}
\quad \mbox { for } m,n \ge 1
\int_0^1 E_n(t) E_m(t)\,dt =
(-1)^{n} 4 (2^{m+n+2}-1)\frac{m! n!}{(m+n+2)!} B_{n+m+2}

Read more about this topic:  Bernoulli Polynomials