Bernoulli Polynomials - Fourier Series

Fourier Series

The Fourier series of the Bernoulli polynomials is also a Dirichlet series, given by the expansion

Note the simple large n limit to suitably scaled trigonometric functions.

This is a special case of the analogous form for the Hurwitz zeta function

B_n(x) = -\Gamma(n+1) \sum_{k=1}^\infty
\frac{ \exp (2\pi ikx) + e^{i\pi n} \exp (2\pi ik(1-x)) } { (2\pi ik)^n }.

This expansion is valid only for 0 ≤ x ≤ 1 when n ≥ 2 and is valid for 0 < x < 1 when n = 1.

The Fourier series of the Euler polynomials may also be calculated. Defining the functions

C_\nu(x) = \sum_{k=0}^\infty
\frac {\cos((2k+1)\pi x)} {(2k+1)^\nu}

and

S_\nu(x) = \sum_{k=0}^\infty
\frac {\sin((2k+1)\pi x)} {(2k+1)^\nu}

for, the Euler polynomial has the Fourier series

C_{2n}(x) = \frac{(-1)^n}{4(2n-1)!}
\pi^{2n} E_{2n-1} (x)

and

S_{2n+1}(x) = \frac{(-1)^n}{4(2n)!}
\pi^{2n+1} E_{2n} (x).

Note that the and are odd and even, respectively:

and

They are related to the Legendre chi function as

and

Read more about this topic:  Bernoulli Polynomials

Famous quotes containing the word series:

    Every Age has its own peculiar faith.... Any attempt to translate into facts the mission of one Age with the machinery of another, can only end in an indefinite series of abortive efforts. Defeated by the utter want of proportion between the means and the end, such attempts might produce martyrs, but never lead to victory.
    Giuseppe Mazzini (1805–1872)