Bernoulli Polynomials - Another Explicit Formula

Another Explicit Formula

An explicit formula for the Bernoulli polynomials is given by

B_m(x)=
\sum_{n=0}^m \frac{1}{n+1}
\sum_{k=0}^n (-1)^k {n \choose k} (x+k)^m.

Note the remarkable similarity to the globally convergent series expression for the Hurwitz zeta function. Indeed, one has

where ζ(s, q) is the Hurwitz zeta; thus, in a certain sense, the Hurwitz zeta generalizes the Bernoulli polynomials to non-integer values of n.

The inner sum may be understood to be the nth forward difference of xm; that is,

where Δ is the forward difference operator. Thus, one may write

This formula may be derived from an identity appearing above as follows. Since the forward difference operator Δ equals

where D is differentiation with respect to x, we have, from the Mercator series

As long as this operates on an mth-degree polynomial such as xm, one may let n go from 0 only up to m.

An integral representation for the Bernoulli polynomials is given by the Nörlund–Rice integral, which follows from the expression as a finite difference.

An explicit formula for the Euler polynomials is given by

E_m(x)=
\sum_{n=0}^m \frac{1}{2^n}
\sum_{k=0}^n (-1)^k {n \choose k} (x+k)^m\,.

This may also be written in terms of the Euler numbers Ek as

E_m(x)=
\sum_{k=0}^m {m \choose k} \frac{E_k}{2^k}
\left(x-\frac{1}{2}\right)^{m-k} \,.

Read more about this topic:  Bernoulli Polynomials

Famous quotes containing the words explicit and/or formula:

    I think “taste” is a social concept and not an artistic one. I’m willing to show good taste, if I can, in somebody else’s living room, but our reading life is too short for a writer to be in any way polite. Since his words enter into another’s brain in silence and intimacy, he should be as honest and explicit as we are with ourselves.
    John Updike (b. 1932)

    I cannot give you the formula for success, but I can give you the formula for failure—which is: Try to please everybody.
    Herbert B. Swope (1882–1958)