Bell Number - Asymptotic Limit and Bounds

Asymptotic Limit and Bounds

Several asymptotic formulae for the Bell numbers are known. One such is

Here

where W is the Lambert W function. (Lovász, 1993)

Moser and Wyman established the expansion

uniformly for as, where and each and are known expressions in .

In (Berend, D. and Tassa, T., 2010), the following bounds were established:

moreover, if then for all ,

where and  ~d(x):= \ln \ln (x+1) - \ln \ln x + \frac{1+e^{-1}}{\ln x}\,.

Read more about this topic:  Bell Number

Famous quotes containing the words limit and/or bounds:

    Washington has seldom seen so numerous, so industrious or so insidious a lobby. There is every evidence that money without limit is being spent to sustain this lobby.... I know that in this I am speaking for the members of the two houses, who would rejoice as much as I would to be released from this unbearable situation.
    Woodrow Wilson (1856–1924)

    Nature seems at each man’s birth to have marked out the bounds of his virtues and vices, and to have determined how good or how wicked that man shall be capable of being.
    François, Duc De La Rochefoucauld (1613–1680)