Bell Number - Asymptotic Limit and Bounds

Asymptotic Limit and Bounds

Several asymptotic formulae for the Bell numbers are known. One such is

Here

where W is the Lambert W function. (Lovász, 1993)

Moser and Wyman established the expansion

uniformly for as, where and each and are known expressions in .

In (Berend, D. and Tassa, T., 2010), the following bounds were established:

moreover, if then for all ,

where and  ~d(x):= \ln \ln (x+1) - \ln \ln x + \frac{1+e^{-1}}{\ln x}\,.

Read more about this topic:  Bell Number

Famous quotes containing the words limit and/or bounds:

    Today, the notion of progress in a single line without goal or limit seems perhaps the most parochial notion of a very parochial century.
    Lewis Mumford (1895–1990)

    Nature seems at each man’s birth to have marked out the bounds of his virtues and vices, and to have determined how good or how wicked that man shall be capable of being.
    François, Duc De La Rochefoucauld (1613–1680)