Bell Number

In combinatorics, the nth Bell number, named after Eric Temple Bell, is the number of partitions of a set with n members, or equivalently, the number of equivalence relations on it. Starting with B0 = B1 = 1, the first few Bell numbers are:

1, 1, 2, 5, 15, 52, 203, 877, 4140, 21147, 115975, … (sequence A000110 in OEIS).

(See also breakdown by number of subsets/equivalence classes.)

Read more about Bell Number:  Partitions of A Set, Properties of Bell Numbers, Asymptotic Limit and Bounds, Triangle Scheme For Calculating Bell Numbers, Prime Bell Numbers

Famous quotes containing the words bell and/or number:

    I was allowed to ring the bell for five minutes until everyone was in assembly. It was the beginning of power.
    Jeffrey Archer (b. 1940)

    God ... created a number of possibilities in case some of his prototypes failed—that is the meaning of evolution.
    Graham Greene (1904–1991)