Bell Number

In combinatorics, the nth Bell number, named after Eric Temple Bell, is the number of partitions of a set with n members, or equivalently, the number of equivalence relations on it. Starting with B0 = B1 = 1, the first few Bell numbers are:

1, 1, 2, 5, 15, 52, 203, 877, 4140, 21147, 115975, … (sequence A000110 in OEIS).

(See also breakdown by number of subsets/equivalence classes.)

Read more about Bell Number:  Partitions of A Set, Properties of Bell Numbers, Asymptotic Limit and Bounds, Triangle Scheme For Calculating Bell Numbers, Prime Bell Numbers

Famous quotes containing the words bell and/or number:

    One of the most difficult aspects of being a parent during the middle years is feeling powerless to protect our children from hurt. However “growthful” it may be for them to experience failure, disappointment and rejection, it is nearly impossible to maintain an intellectual perspective when our sobbing child or rageful child comes in to us for help. . . . We can’t turn the hurt around by kissing the sore spot to make it better. We are no longer the all-powerful parent.
    —Ruth Davidson Bell (20th century)

    I think, for the rest of my life, I shall refrain from looking up things. It is the most ravenous time-snatcher I know. You pull one book from the shelf, which carries a hint or a reference that sends you posthaste to another book, and that to successive others. It is incredible, the number of books you hopefully open and disappointedly close, only to take down another with the same result.
    Carolyn Wells (1862–1942)