Bayesian Inference - in Frequentist Statistics and Decision Theory

In Frequentist Statistics and Decision Theory

A decision-theoretic justification of the use of Bayesian inference was given by Abraham Wald, who proved that every Bayesian procedure is admissible. Conversely, every admissible statistical procedure is either a Bayesian procedure or a limit of Bayesian procedures.

Wald characterized admissible procedures as Bayesian procedures (and limits of Bayesian procedures), making the Bayesian formalism a central technique in such areas of frequentist inference as parameter estimation, hypothesis testing, and computing confidence intervals. For example:

  • "Under some conditions, all admissible procedures are either Bayes procedures or limits of Bayes procedures (in various senses). These remarkable results, at least in their original form, are due essentially to Wald. They are useful because the property of being Bayes is easier to analyze than admissibility."
  • "In decision theory, a quite general method for proving admissibility consists in exhibiting a procedure as a unique Bayes solution."
  • "In the first chapters of this work, prior distributions with finite support and the corresponding Bayes procedures were used to establish some of the main theorems relating to the comparison of experiments. Bayes procedures with respect to more general prior distributions have played a very important role in the development of statistics, including its asymptotic theory." "There are many problems where a glance at posterior distributions, for suitable priors, yields immediately interesting information. Also, this technique can hardly be avoided in sequential analysis."
  • "A useful fact is that any Bayes decision rule obtained by taking a proper prior over the whole parameter space must be admissible"
  • "An important area of investigation in the development of admissibility ideas has been that of conventional sampling-theory procedures, and many interesting results have been obtained."

Read more about this topic:  Bayesian Inference

Famous quotes containing the words statistics, decision and/or theory:

    He uses statistics as a drunken man uses lamp-posts—for support rather than illumination.
    Andrew Lang (1844–1912)

    The impulse to perfection cannot exist where the definition of perfection is the arbitrary decision of authority. That which is born in loneliness and from the heart cannot be defended against the judgment of a committee of sycophants. The volatile essences which make literature cannot survive the clichés of a long series of story conferences.
    Raymond Chandler (1888–1959)

    Everything to which we concede existence is a posit from the standpoint of a description of the theory-building process, and simultaneously real from the standpoint of the theory that is being built. Nor let us look down on the standpoint of the theory as make-believe; for we can never do better than occupy the standpoint of some theory or other, the best we can muster at the time.
    Willard Van Orman Quine (b. 1908)