Backpropagation
Backpropagation is a common method of training artificial neural networks so as to minimize the objective function. Arthur E. Bryson and Yu-Chi Ho described it as a multi-stage dynamic system optimization method in 1969. It wasn't until 1974 and later, when applied in the context of neural networks and through the work of Paul Werbos, David E. Rumelhart, Geoffrey E. Hinton and Ronald J. Williams, that it gained recognition, and it led to a “renaissance” in the field of artificial neural network research.
Read more about Backpropagation.