Relation To The Axiom Schema of Specification
The axiom schema of specification, the other axiom schema in ZFC, is implied by the axiom schema of replacement and the axiom of empty set. Recall that the axiom schema of specification includes
for each formula θ in the language of set theory in which B is not free.
The proof is as follows. Begin with a formula θ(C) that does not mention B, and a set A. If no element E of A satisfies θ then the set B desired by the relevant instance of the axiom schema of separation is the empty set. Otherwise, choose a fixed E in A such that θ(E) holds. Define a class function F such that F(D) = D if θ(D) holds and F(D) = E if θ(D) is false. Then the set B = F "A = A∩{x|θ(x)} exists, by the axiom of replacement, and is precisely the set B required for the axiom of specification.
This result shows that it is possible to axiomatize ZFC with a single infinite axiom schema. Because at least one such infinite schema is required (ZFC is not finitely axiomatizable), this shows that the axiom schema of replacement can stand as the only infinite axiom schema in ZFC if desired. Because the axiom schema of specification is not independent, it is sometimes omitted from contemporary statements of the Zermelo-Fraenkel axioms.
Specification is still important, however, for use in fragments of ZFC, because of historical considerations, and for comparison with alternative axiomatizations of set theory. A formulation of set theory that does not include the axiom of replacement will likely include some form of the axiom of specification, to ensure that its models contain a robust collection of sets. In the study of models of set theory, it is sometimes useful to consider models of ZFC without replacement.
The proof above uses the law of excluded middle in assuming that if A is nonempty then it must contain an element (in intuitionistic logic, a set is "empty" if it does not contain an element, and "nonempty" is the formal negation of this, which is weaker than "does contain an element"). The axiom of specification is included in intuitionistic set theory.
Read more about this topic: Axiom Schema Of Replacement
Famous quotes containing the words relation to the, relation to, relation and/or axiom:
“Concord is just as idiotic as ever in relation to the spirits and their knockings. Most people here believe in a spiritual world ... in spirits which the very bullfrogs in our meadows would blackball. Their evil genius is seeing how low it can degrade them. The hooting of owls, the croaking of frogs, is celestial wisdom in comparison.”
—Henry David Thoreau (18171862)
“Science is the language of the temporal world; love is that of the spiritual world. Man, indeed, describes more than he explains; while the angelic spirit sees and understands. Science saddens man; love enraptures the angel; science is still seeking, love has found. Man judges of nature in relation to itself; the angelic spirit judges of it in relation to heaven. In short to the spirits everything speaks.”
—Honoré De Balzac (17991850)
“Unaware of the absurdity of it, we introduce our own petty household rules into the economy of the universe for which the life of generations, peoples, of entire planets, has no importance in relation to the general development.”
—Alexander Herzen (18121870)
“You are bothered, I suppose, by the idea that you cant possibly believe in miracles and mysteries, and therefore cant make a good wife for Hazard. You might just as well make yourself unhappy by doubting whether you would make a good wife to me because you cant believe the first axiom in Euclid. There is no science which does not begin by requiring you to believe the incredible.”
—Henry Brooks Adams (18381918)