Axiom of Regularity - History

History

The concept of well-foundedness and rank of a set were both introduced by Dmitry Mirimanoff (1917) cf. Lévy (2002, p. 68) and Hallett (1986, §4.4, esp. p. 186, 188). Mirimanoff called a set x "regular" (French: "ordinaire") if every descending chain xx1x2 ∋ ... is finite. Mirimanoff however did not consider his notion of regularity (and well-foundedness) as an axiom to be observed by all sets (Halbeisen 2012, pp. 62–63); in later papers Mirimanoff also explored what are now called non-well-founded sets ("extraordinaire" in Mirimanoff's terminology) (Sangiorgi 2011, pp. 17–19, 26).

According to Adam Rieger, von Neumann (1925) describes non-well-founded sets as "superfluous" (on p. 404 in van Heijenoort 's translation) and in the same publication von Neumann gives an axiom (p. 412 in translation) which excludes some, but not all, non-well-founded sets (Rieger 2011, p. 179). In a subsequent publication, von Neumann (1928) gave the following axiom (rendered in modern notation by A. Rieger):

.

Read more about this topic:  Axiom Of Regularity

Famous quotes containing the word history:

    It is true that this man was nothing but an elemental force in motion, directed and rendered more effective by extreme cunning and by a relentless tactical clairvoyance .... Hitler was history in its purest form.
    Albert Camus (1913–1960)

    The history of a soldier’s wound beguiles the pain of it.
    Laurence Sterne (1713–1768)

    Only the history of free peoples is worth our attention; the history of men under a despotism is merely a collection of anecdotes.
    —Sébastien-Roch Nicolas De Chamfort (1741–1794)