Atomic Force Microscopy - Identification of Individual Surface Atoms

Identification of Individual Surface Atoms

The AFM can be used to image and manipulate atoms and structures on a variety of surfaces. The atom at the apex of the tip "senses" individual atoms on the underlying surface when it forms incipient chemical bonds with each atom. Because these chemical interactions subtly alter the tip's vibration frequency, they can be detected and mapped. This principle was used to distinguish between atoms of silicon, tin and lead on an alloy surface, by comparing these 'atomic fingerprints' to values obtained from large-scale density functional theory (DFT) simulations.

The trick is to first measure these forces precisely for each type of atom expected in the sample, and then to compare with forces given by DFT simulations. The team found that the tip interacted most strongly with silicon atoms, and interacted 23% and 41% less strongly with tin and lead atoms, respectively. Thus, each different type of atom can be identified in the matrix as the tip is moved across the surface.

Read more about this topic:  Atomic Force Microscopy

Famous quotes containing the words individual, surface and/or atoms:

    We recognize caste in dogs because we rank ourselves by the familiar dog system, a ladderlike social arrangement wherein one individual outranks all others, the next outranks all but the first, and so on down the hierarchy. But the cat system is more like a wheel, with a high-ranking cat at the hub and the others arranged around the rim, all reluctantly acknowledging the superiority of the despot but not necessarily measuring themselves against one another.
    —Elizabeth Marshall Thomas. “Strong and Sensitive Cats,” Atlantic Monthly (July 1994)

    But the surface of the Earth was meant for man. He wasn’t meant to live in a hole in the ground.
    Edward L. Bernds (b. 1911)

    The atoms of Democritus
    And Newton’s particles of light
    Are sands upon the Red Sea shore,
    Where Israel’s tents do shine so bright.
    William Blake (1757–1827)