Asymptotic Expansion

In mathematics, an asymptotic expansion, asymptotic series or Poincaré expansion (after Henri Poincaré) is a formal series of functions which has the property that truncating the series after a finite number of terms provides an approximation to a given function as the argument of the function tends towards a particular, often infinite, point.

If φn is a sequence of continuous functions on some domain, and if L is a (possibly infinite) limit point of the domain, then the sequence constitutes an asymptotic scale if for every n, . If f is a continuous function on the domain of the asymptotic scale, then f has an asymptotic expansion of order N with respect to the scale as a formal series if

or

If one or the other holds for all N, then we write

See asymptotic analysis and big O notation for the notation.

The most common type of asymptotic expansion is a power series in either positive or negative powers. Methods of generating such expansions include the Euler–Maclaurin summation formula and integral transforms such as the Laplace and Mellin transforms. Repeated integration by parts will often lead to an asymptotic expansion.

Since a convergent Taylor series fits the definition of asymptotic expansion as well, the phrase "asymptotic series" usually implies a non-convergent series. Despite non-convergence, the asymptotic expansion is useful when truncated to a finite number of terms. Typically, the best approximation is given when the series is truncated at the smallest term. This way of optimally truncating an asymptotic expansion is known as superasymptotics. The error is then typically of the form where ε is the expansion parameter. The error is thus beyond all orders in the expansion parameter. It is possible to improve on the superasymptotic error, e.g. by employing resummation methods such as Borel resummation to the divergent tail. Such methods are often referred to as hyperasymptotic approximations.


Read more about Asymptotic Expansion:  Examples of Asymptotic Expansions, Detailed Example

Famous quotes containing the word expansion:

    We are caught up Mr. Perry on a great wave whether we will or no, a great wave of expansion and progress. All these mechanical inventions—telephones, electricity, steel bridges, horseless vehicles—they are all leading somewhere. It’s up to us to be on the inside in the forefront of progress.
    John Dos Passos (1896–1970)