Artificial Neural Network - Disadvantages

Disadvantages

One drawback to using artificial neural networks, particularly in robotics, is that they require a large diversity of training for real-world operation. A. K. Dewdney, a former Scientific American columnist, wrote in 1997, "Although neural nets do solve a few toy problems, their powers of computation are so limited that I am surprised anyone takes them seriously as a general problem-solving tool." (Dewdney, p. 82)

Arguments for Dewdney's position are that to implement large and effective software neural networks, much processing and storage resources need to be committed. While the brain has hardware tailored to the task of processing signals through a graph of neurons, simulating even a most simplified form on Von Neumann technology may compel a NN designer to fill many millions of database rows for its connections - which can lead to excessive RAM and HD necessities. Furthermore, the designer of NN systems will often need to simulate the transmission of signals through many of these connections and their associated neurons - which must often be matched with incredible amounts of CPU processing power and time. While neural networks often yield effective programs, they too often do so at the cost of time and monetary efficiency.

Arguments against Dewdney's position are that neural nets have been successfully used to solve many complex and diverse tasks, ranging from autonomously flying aircraft to detecting credit card fraud. Technology writer Roger Bridgman commented on Dewdney's statements about neural nets:

Neural networks, for instance, are in the dock not only because they have been hyped to high heaven, (what hasn't?) but also because you could create a successful net without understanding how it worked: the bunch of numbers that captures its behaviour would in all probability be "an opaque, unreadable table...valueless as a scientific resource". In spite of his emphatic declaration that science is not technology, Dewdney seems here to pillory neural nets as bad science when most of those devising them are just trying to be good engineers. An unreadable table that a useful machine could read would still be well worth having.

Some other criticisms came from believers of hybrid models (combining neural networks and symbolic approaches). They advocate the intermix of these two approaches and believe that hybrid models can better capture the mechanisms of the human mind (Sun and Bookman 1994).

Read more about this topic:  Artificial Neural Network