In complex analysis, the argument principle (or Cauchy's argument principle) relates the difference between the number of zeros and poles of a meromorphic function to a contour integral of the function's logarithmic derivative.
Specifically, if f(z) is a meromorphic function inside and on some closed contour C, and f has no zeros or poles on C, then
where N and P denote respectively the number of zeros and poles of f(z) inside the contour C, with each zero and pole counted as many times as its multiplicity, respectively order, indicates. This statement of the theorem assumes that the contour C is simple, that is, without self-intersections, and that it is oriented counter-clockwise.
More generally, suppose that f(z) is a meromorphic function on an open set Ω in the complex plane and that C is a closed curve in Ω which avoids all zeros and poles of f and is contractible to a point inside Ω. For each point z ∈ Ω, let n(C,z) be the winding number of C around z. Then
where the first summation is over all zeros a of f counted with their multiplicities, and the second summation is over the poles b of f counted with their orders.
Read more about Argument Principle: Interpretation of The Contour Integral, Proof of The Argument Principle, Applications and Consequences, History
Famous quotes containing the words argument and/or principle:
“Coming out, all the way out, is offered more and more as the political solution to our oppression. The argument goes that, if people could see just how many of us there are, some in very important places, the negative stereotype would vanish overnight. ...It is far more realistic to suppose that, if the tenth of the population that is gay became visible tomorrow, the panic of the majority of people would inspire repressive legislation of a sort that would shock even the pessimists among us.”
—Jane Rule (b. 1931)
“An evident principle ... is the principle of justice to all peoples and nationalities, and their right to live on equal terms of liberty and safety with one another, whether they be strong or weak.”
—Woodrow Wilson (18561924)