Argument Principle - Proof of The Argument Principle

Proof of The Argument Principle

Let zN be a zero of f. We can write f(z) = (zzN)kg(z) where k is the multiplicity of the zero, and thus g(zN) ≠ 0. We get

and

Since g(zN) ≠ 0, it follows that g' (z)/g(z) has no singularities at zN, and thus is analytic at zN, which implies that the residue of f′(z)/f(z) at zN is k.

Let zP be a pole of f. We can write f(z) = (zzP)−mh(z) where m is the order of the pole, and thus h(zP) ≠ 0. Then,

and

similarly as above. It follows that h′(z)/h(z) has no singularities at zP since h(zP) ≠ 0 and thus it is analytic at zP. We find that the residue of f′(z)/f(z) at zP is −m.

Putting these together, each zero zN of multiplicity k of f creates a simple pole for f′(z)/f(z) with the residue being k, and each pole zP of order m of f creates a simple pole for f′(z)/f(z) with the residue being −m. (Here, by a simple pole we mean a pole of order one.) In addition, it can be shown that f′(z)/f(z) has no other poles, and so no other residues.

By the residue theorem we have that the integral about C is the product of 2πi and the sum of the residues. Together, the sum of the k 's for each zero zN is the number of zeros counting multiplicities of the zeros, and likewise for the poles, and so we have our result.

Read more about this topic:  Argument Principle

Famous quotes containing the words proof of, proof, argument and/or principle:

    The insatiable thirst for everything which lies beyond, and which life reveals, is the most living proof of our immortality.
    Charles Baudelaire (1821–1867)

    Right and proof are two crutches for everything bent and crooked that limps along.
    Franz Grillparzer (1791–1872)

    If this phrase of the “balance of power” is to be always an argument for war, the pretext for war will never be wanting, and peace can never be secure.
    John Bright (1811–1889)

    I ... observed the great beauty of American government to be, that the simple machines of representation, carried through all its parts, gives facility for a being moulded at will to fit with the knowledge of the age; that thus, although it should be imperfect in any or all of its parts, it bears within it a perfect principle the principle of improvement.

    Frances Wright (1795–1852)