Proof of The Argument Principle
Let zN be a zero of f. We can write f(z) = (z − zN)kg(z) where k is the multiplicity of the zero, and thus g(zN) ≠ 0. We get
and
Since g(zN) ≠ 0, it follows that g' (z)/g(z) has no singularities at zN, and thus is analytic at zN, which implies that the residue of f′(z)/f(z) at zN is k.
Let zP be a pole of f. We can write f(z) = (z − zP)−mh(z) where m is the order of the pole, and thus h(zP) ≠ 0. Then,
and
similarly as above. It follows that h′(z)/h(z) has no singularities at zP since h(zP) ≠ 0 and thus it is analytic at zP. We find that the residue of f′(z)/f(z) at zP is −m.
Putting these together, each zero zN of multiplicity k of f creates a simple pole for f′(z)/f(z) with the residue being k, and each pole zP of order m of f creates a simple pole for f′(z)/f(z) with the residue being −m. (Here, by a simple pole we mean a pole of order one.) In addition, it can be shown that f′(z)/f(z) has no other poles, and so no other residues.
By the residue theorem we have that the integral about C is the product of 2πi and the sum of the residues. Together, the sum of the k 's for each zero zN is the number of zeros counting multiplicities of the zeros, and likewise for the poles, and so we have our result.
Read more about this topic: Argument Principle
Famous quotes containing the words proof of the, proof of, proof, argument and/or principle:
“Sculpture and painting are very justly called liberal arts; a lively and strong imagination, together with a just observation, being absolutely necessary to excel in either; which, in my opinion, is by no means the case of music, though called a liberal art, and now in Italy placed even above the other twoa proof of the decline of that country.”
—Philip Dormer Stanhope, 4th Earl Chesterfield (16941773)
“The insatiable thirst for everything which lies beyond, and which life reveals, is the most living proof of our immortality.”
—Charles Baudelaire (18211867)
“He who has never failed somewhere, that man can not be great. Failure is the true test of greatness. And if it be said, that continual success is a proof that a man wisely knows his powers,it is only to be added, that, in that case, he knows them to be small.”
—Herman Melville (18191891)
“English! they are barbarians; they dont believe in the great God. I told him, Excuse me, Sir. We do believe in God, and in Jesus Christ too. Um, says he, and in the Pope? No. And why? This was a puzzling question in these circumstances.... I thought I would try a method of my own, and very gravely replied, Because we are too far off. A very new argument against the universal infallibility of the Pope.”
—James Boswell (17401795)
“The sons of Judah have to choose that God may again choose them.... The divine principle of our race is action, choice, resolved memory.”
—George Eliot [Mary Ann (or Marian)