Archimedean Property - Definition For Linearly Ordered Groups

Definition For Linearly Ordered Groups

Let x and y be positive elements of a linearly ordered group G. Then x is infinitesimal with respect to y (or equivalently, y is infinite with respect to x) if, for every natural number n, the multiple nx is less than y, that is, the following inequality holds:

The group G is Archimedean if there is no pair x,y such that x is infinitesimal with respect to y.

Additionally, if K is an algebraic structure with a unit (1) — for example, a ring — a similar definition applies to K. If x is infinitesimal with respect to 1, then x is an infinitesimal element. Likewise, if y is infinite with respect to 1, then y is an infinite element. The algebraic structure K is Archimedean if it has no infinite elements and no infinitesimal elements.

Read more about this topic:  Archimedean Property

Famous quotes containing the words definition, ordered and/or groups:

    No man, not even a doctor, ever gives any other definition of what a nurse should be than this—”devoted and obedient.” This definition would do just as well for a porter. It might even do for a horse. It would not do for a policeman.
    Florence Nightingale (1820–1910)

    The case of Andrews is really a very bad one, as appears by the record already before me. Yet before receiving this I had ordered his punishment commuted to imprisonment ... and had so telegraphed. I did this, not on any merit in the case, but because I am trying to evade the butchering business lately.
    Abraham Lincoln (1809–1865)

    Trees appeared in groups and singly, revolving coolly and blandly, displaying the latest fashions. The blue dampness of a ravine. A memory of love, disguised as a meadow. Wispy clouds—the greyhounds of heaven.
    Vladimir Nabokov (1899–1977)