Curves With Infinite Length
As mentioned above, some curves are non-rectifiable, that is, there is no upper bound on the lengths of polygonal approximations; the length can be made arbitrarily large. Informally, such curves are said to have infinite length. There are continuous curves on which every arc (other than a single-point arc) has infinite length. An example of such a curve is the Koch curve. Another example of a curve with infinite length is the graph of the function defined by f(x) = x sin(1/x) for any open set with 0 as one of its delimiters and f(0) = 0. Sometimes the Hausdorff dimension and Hausdorff measure are used to "measure" the size of such curves.
Read more about this topic: Arc Length
Famous quotes containing the words curves, infinite and/or length:
“One way to do it might be by making the scenery penetrate the automobile. A polished black sedan was a good subject, especially if parked at the intersection of a tree-bordered street and one of those heavyish spring skies whose bloated gray clouds and amoeba-shaped blotches of blue seem more physical than the reticent elms and effusive pavement. Now break the body of the car into separate curves and panels; then put it together in terms of reflections.”
—Vladimir Nabokov (18991977)
“The nonchalance and dolce-far-niente air of nature and society hint at infinite periods in the progress of mankind.”
—Henry David Thoreau (18171862)
“Men sometimes speak as if the study of the classics would at length make way for more modern and practical studies; but the adventurous student will always study classics, in whatever language they may be written and however ancient they may be. For what are the classics but the noblest recorded thoughts of man?... We might as well omit to study Nature because she is old.”
—Henry David Thoreau (18171862)