Arc Length - Curves With Infinite Length

Curves With Infinite Length

As mentioned above, some curves are non-rectifiable, that is, there is no upper bound on the lengths of polygonal approximations; the length can be made arbitrarily large. Informally, such curves are said to have infinite length. There are continuous curves on which every arc (other than a single-point arc) has infinite length. An example of such a curve is the Koch curve. Another example of a curve with infinite length is the graph of the function defined by f(x) = x sin(1/x) for any open set with 0 as one of its delimiters and f(0) = 0. Sometimes the Hausdorff dimension and Hausdorff measure are used to "measure" the size of such curves.

Read more about this topic:  Arc Length

Famous quotes containing the words curves, infinite and/or length:

    For a hundred and fifty years, in the pasture of dead horses,
    roots of pine trees pushed through the pale curves of your ribs,
    yellow blossoms flourished above you in autumn, and in winter
    frost heaved your bones in the ground—old toilers, soil makers:
    O Roger, Mackerel, Riley, Ned, Nellie, Chester, Lady Ghost.
    Donald Hall (b. 1928)

    We know that every person who is loved feels transformed, unfolded, and he unfolds everything, the most intimate as well as the most familiar, to the one who loves him as well as to himself.... The person one loves is as ungraspable as the universe, as God’s infinite space, he is boundless, full of possibilities, full of secrets.
    Max Frisch (1911–1991)

    Rivers must have been the guides which conducted the footsteps of the first travelers. They are the constant lure, when they flow by our doors, to distant enterprise and adventure; and, by a natural impulse, the dwellers on their banks will at length accompany their currents to the lowlands of the globe, or explore at their invitation the interior of continents.
    Henry David Thoreau (1817–1862)