Examples of Analytic Continuation
is a power series corresponding to the natural logarithm near z = 1. This power series can be turned into a germ
This germ has a radius of convergence of 1, and so there is a sheaf S corresponding to it. This is the sheaf of the logarithm function.
The uniqueness theorem for analytic functions also extends to sheaves of analytic functions: if the sheaf of an analytic function contains the zero germ (i.e., the sheaf is uniformly zero in some neighborhood) then the entire sheaf is zero. Armed with this result, we can see that if we take any germ g of the sheaf S of the logarithm function, as described above, and turn it into a power series f(z) then this function will have the property that exp(f(z))=z. If we had decided to use a version of the inverse function theorem for analytic functions, we could construct a wide variety of inverses for the exponential map, but we would discover that they are all represented by some germ in S. In that sense, S is the "one true inverse" of the exponential map.
In older literature, sheaves of analytic functions were called multi-valued functions. See sheaf for the general concept.
Read more about this topic: Analytic Continuation
Famous quotes containing the words examples of, examples, analytic and/or continuation:
“Histories are more full of examples of the fidelity of dogs than of friends.”
—Alexander Pope (16881744)
“There are many examples of women that have excelled in learning, and even in war, but this is no reason we should bring em all up to Latin and Greek or else military discipline, instead of needle-work and housewifry.”
—Bernard Mandeville (16701733)
“You, that have not lived in thought but deed,
Can have the purity of a natural force,
But I, whose virtues are the definitions
Of the analytic mind, can neither close
The eye of the mind nor keep my tongue from speech.”
—William Butler Yeats (18651939)
“After an argument, silence may mean acceptanceor the continuation of resistance by other means.”
—Mason Cooley (b. 1927)