Casimir Effect

In quantum field theory, the Casimir effect and the Casimir–Polder force are physical forces arising from a quantized field. The typical example is of two uncharged metallic plates in a vacuum, placed a few micrometers apart as in a capacitor but without any external electromagnetic field. In a classical description, the lack of an external field also means that there is no field between the plates, and no force would be measured between them. When this field is instead studied using the QED vacuum of quantum electrodynamics, it is seen that the plates do affect the virtual photons which constitute the field, and generate a net force—either an attraction or a repulsion depending on the specific arrangement of the two plates. Although the Casimir effect can be expressed in terms of virtual particles interacting with the objects, it is best described and more easily calculated in terms of the zero-point energy of a quantized field in the intervening space between the objects. This force has been measured, and is a striking example of an effect purely due to second quantization. However, the treatment of boundary conditions in these calculations has led to some controversy. In fact "Casimir's original goal was to compute the van der Waals force between polarizable molecules" of the metallic plates. Thus it can be interpreted without any reference to the zero-point energy (vacuum energy) or virtual particles of quantum fields.

Dutch physicists Hendrik B. G. Casimir and Dirk Polder at Philips Research Labs proposed the existence of a force between two polarizable atoms and between such an atom and a conducting plate in 1947, and, after a conversation with Niels Bohr who suggested it had something to do with zero-point energy, Casimir alone formulated the theory predicting a force between neutral conducting plates in 1948; the former is called the Casimir-Polder force while the latter is the Casimir effect in the narrow sense. Predictions of the force were later extended to finite-conductivity metals and dielectrics by Lifshitz and his students, and recent calculations have considered more general geometries. It was not until 1997, however, that a direct experiment, by S. Lamoreaux, described above, quantitatively measured the force (to within 15% of the value predicted by the theory), although previous work had observed the force qualitatively, and indirect validation of the predicted Casimir energy had been made by measuring the thickness of liquid Helium films by Sabisky and Anderson in 1972. Subsequent experiments approach an accuracy of a few percent.

Because the strength of the force falls off rapidly with distance, it is only measurable when the distance between the objects is extremely small. On a submicron scale, this force becomes so strong that it becomes the dominant force between uncharged conductors. In fact, at separations of 10 nm—about 100 times the typical size of an atom—the Casimir effect produces the equivalent of 1 atmosphere of pressure (101.325 kPa), the precise value depending on surface geometry and other factors.

In modern theoretical physics, the Casimir effect plays an important role in the chiral bag model of the nucleon; and in applied physics, it is significant in some aspects of emerging microtechnologies and nanotechnologies.

Any medium supporting oscillations has an analogue of the Casimir effect. For example, beads on a string as well as plates submerged in noisy water or gas exhibit the Casimir force.

Read more about Casimir Effect:  Overview, Effects, Derivation of Casimir Effect Assuming Zeta-regularization, Measurement, Regularisation, Generalities, Wormholes, Analogies and The Dynamic Casimir Effect, Repulsive Forces, Applications

Famous quotes containing the word effect:

    Thinking is seeing.... Every human science is based on deduction, which is a slow process of seeing by which we work up from the effect to the cause; or, in a wider sense, all poetry like every work of art proceeds from a swift vision of things.
    Honoré De Balzac (1799–1850)