Basic Results
- An affine algebraic set V is a variety if and only if I(V) is a prime ideal; equivalently, V is a variety if and only if its coordinate ring is an integral domain.
- Every nonempty affine algebraic set may be written uniquely as a union of algebraic varieties (where none of the sets in the decomposition are subsets of each other).
- Let k be the coordinate ring of the variety V. Then the dimension of V is the transcendence degree of the field of fractions of k over k.
Read more about this topic: Algebraic Variety
Famous quotes containing the words basic and/or results:
“Insecurity, commonly regarded as a weakness in normal people, is the basic tool of the actors trade.”
—Miranda Richardson (b. 1958)
“We do not raise our children alone.... Our children are also raised by every peer, institution, and family with which they come in contact. Yet parents today expect to be blamed for whatever results occur with their children, and they expect to do their parenting alone.”
—Richard Louv (20th century)
Related Subjects
Related Phrases
Related Words