Algebraic Topology - Results On Homology

Results On Homology

Several useful results follow immediately from working with finitely generated abelian groups. The free rank of the n-th homology group of a simplicial complex is equal to the n-th Betti number, so one can use the homology groups of a simplicial complex to calculate its Euler-Poincaré characteristic. As another example, the top-dimensional integral homology group of a closed manifold detects orientability: this group is isomorphic to either the integers or 0, according as the manifold is orientable or not. Thus, a great deal of topological information is encoded in the homology of a given topological space.

Beyond simplicial homology, which is defined only for simplicial complexes, one can use the differential structure of smooth manifolds via de Rham cohomology, or Čech or sheaf cohomology to investigate the solvability of differential equations defined on the manifold in question. De Rham showed that all of these approaches were interrelated and that, for a closed, oriented manifold, the Betti numbers derived through simplicial homology were the same Betti numbers as those derived through de Rham cohomology. This was extended in the 1950s, when Eilenberg and Steenrod generalized this approach. They defined homology and cohomology as functors equipped with natural transformations subject to certain axioms (e.g., a weak equivalence of spaces passes to an isomorphism of homology groups), verified that all existing (co)homology theories satisfied these axioms, and then proved that such an axiomatization uniquely characterized the theory.

A new approach uses a functor from filtered spaces to crossed complexes defined directly and homotopically using relative homotopy groups; a higher homotopy van Kampen theorem proved for this functor enables basic results in algebraic topology, especially on the border between homology and homotopy, to be obtained without using singular homology or simplicial approximation. This approach is also called nonabelian algebraic topology, and generalises to higher dimensions ideas coming from the fundamental group.

Read more about this topic:  Algebraic Topology

Famous quotes containing the word results:

    For every life and every act
    Consequence of good and evil can be shown
    And as in time results of many deeds are blended
    So good and evil in the end become confounded.
    —T.S. (Thomas Stearns)