Algebraic Number - The Field of Algebraic Numbers

The Field of Algebraic Numbers

The sum, difference, product and quotient of two algebraic numbers is again algebraic (this fact can be demonstrated using the resultant), and the algebraic numbers therefore form a field, sometimes denoted by A (which may also denote the adele ring) or Q. Every root of a polynomial equation whose coefficients are algebraic numbers is again algebraic. This can be rephrased by saying that the field of algebraic numbers is algebraically closed. In fact, it is the smallest algebraically closed field containing the rationals, and is therefore called the algebraic closure of the rationals.

Read more about this topic:  Algebraic Number

Famous quotes containing the words field, algebraic and/or numbers:

    I don’t like comparisons with football. Baseball is an entirely different game. You can watch a tight, well-played football game, but it isn’t exciting if half the stadium is empty. The violence on the field must bounce off a lot of people. But you can go to a ball park on a quiet Tuesday afternoon with only a few thousand people in the place and thoroughly enjoy a one-sided game. Baseball has an aesthetic, intellectual appeal found in no other team sport.
    Bowie Kuhn (b. 1926)

    I have no scheme about it,—no designs on men at all; and, if I had, my mode would be to tempt them with the fruit, and not with the manure. To what end do I lead a simple life at all, pray? That I may teach others to simplify their lives?—and so all our lives be simplified merely, like an algebraic formula? Or not, rather, that I may make use of the ground I have cleared, to live more worthily and profitably?
    Henry David Thoreau (1817–1862)

    Publishers are notoriously slothful about numbers, unless they’re attached to dollar signs—unlike journalists, quarterbacks, and felony criminal defendents who tend to be keenly aware of numbers at all times.
    Hunter S. Thompson (b. 1939)