Algebraic Number - The Field of Algebraic Numbers

The Field of Algebraic Numbers

The sum, difference, product and quotient of two algebraic numbers is again algebraic (this fact can be demonstrated using the resultant), and the algebraic numbers therefore form a field, sometimes denoted by A (which may also denote the adele ring) or Q. Every root of a polynomial equation whose coefficients are algebraic numbers is again algebraic. This can be rephrased by saying that the field of algebraic numbers is algebraically closed. In fact, it is the smallest algebraically closed field containing the rationals, and is therefore called the algebraic closure of the rationals.

Read more about this topic:  Algebraic Number

Famous quotes containing the words field, algebraic and/or numbers:

    What though the field be lost?
    All is not lost; the unconquerable Will,
    And study of revenge, immortal hate,
    And courage never to submit or yield:
    And what is else not to be overcome?
    John Milton (1608–1674)

    I have no scheme about it,—no designs on men at all; and, if I had, my mode would be to tempt them with the fruit, and not with the manure. To what end do I lead a simple life at all, pray? That I may teach others to simplify their lives?—and so all our lives be simplified merely, like an algebraic formula? Or not, rather, that I may make use of the ground I have cleared, to live more worthily and profitably?
    Henry David Thoreau (1817–1862)

    All ye poets of the age,
    All ye witlings of the stage,
    Learn your jingles to reform,
    Crop your numbers to conform.
    Let your little verses flow
    Gently, sweetly, row by row;
    Let the verse the subject fit,
    Little subject, little wit.
    Namby-Pamby is your guide,
    Albion’s joy, Hibernia’s pride.
    Henry Carey (1693?–1743)